Новости
13

янв

Кошка Матроска из Владивостока не будет символом Владивостока

Многие наверняка помнят историю произошедшую за несколько дней до

подробнее

22

дек

Промысловая обстановка хорошая заявил Андрей Горничных в режиме видеоконференции

Начальник Управления организации рыболовства Федерального агентства

подробнее

22

сен

Жители села Амга Примоского края до сих не получили никакой помощи после стихии

Как сообщает сайт «Новости Владивостока», север Приморского края, в

подробнее

17

сен

Дальневосточная рыба абсолютно безопасна, заявляют ученые

Зараженные воды, которые могли принести морские течения от «Фукусимы»

подробнее

17

сен

"Пиранья" поможет рыбоохране Бурятии

В ходе нового сезона охоты за браконьерами в Бурятии изъяты и

подробнее

Принцип работы эхолота


Принцип работы эхолотов

Эхолот состоит из четырех основных элементов: передатчика (излучателя), приемника (датчика), преобразователя (тран-дюсера) и экрана (дисплея).

Передатчик вырабатывает следующие через определенные интервалы времени высокочастотные импульсы. В современных эхолотах применяются частоты 50 и 200 кГц, иногда встречается частота 192 кГц. Излучаемые преобразователем звуковые сигналы распространяются в воде со скоростью около 1500 м/сек. и отражаются от дна, рыб, водорослей, камней и пр. предметов (Рис. 1). Достигшие до приемника эхо-сигналы возбуждают в нем электрические импульсы, которые затем усиливаются в преобразователе и поступают в дисплей.

Преобразованные результаты зондирования отображаются на экране прибора в удобной для восприятия графической или алфавитно-цифровой форме.

Рис. 1. Принцип работы эхолота

Дисплей отображает результаты ультразвукового зондирования и управляет работой прибора. Для этого на нем имеется жидкокристаллический монохромный или цветной экран и клавиатура (рис. 2).

Изображение на экране подводного пространства под судном получается в результате использования так называемых   разверток (иногда используется другое название – прокрутка). Основная рабочая развертка (быстрая) – вертикальная развертка. Каждый принятый приемником эхолота отраженный сигнал отображается на экране в виде темной точки или вертикальной полосы, отстоящей от линии поверхности на расстоянии, пропорциональной глубине отражающего объекта. Быстрая вертикальная развертка на правой стороне экрана дает текущую (мгновенную) картину под судном.

Отображение подводного пространства под судном в координатах «глубина – время» осуществляется посредством вспомогательной (медленной) горизонтальной развертки, передвигающей текущее изображение влево по экрану. Таким образом, на левой стороне экрана создается картина того, что происходило под водой во время зондирования за некий предыдущий отрезок времени.

Если судно неподвижно, то дно будет отображаться в виде горизонтальных полос, а попадающие в луч излучателя рыбы в виде отметок (о них речь пойдет позже), перемещающихся влево вместе с разверткой.

При движении судна изображение дна будет изменяться соответственно изменениям глубины. При этом для наглядности картины, скорость развертки должна соответствовать скорости движения судна – для этого в большинстве эхолотов имеется возможность ее регулировки.

В связи с таким способом получения изображения необходимо понимать, что находящаяся на экране картина – это прошлое событие. Так, находящаяся на экране отметка рыбы означает не то, что она в данный момент находится под судном в луче излучателя, а то, что она какое-то время назад была там. Для того чтобы видеть, что происходит непосредственно под судном в момент наблюдения, во многих моделях эхолотов вдоль правого края экрана создается дополнительное окно, в котором отображение производится без горизонтальной развертки.

Рис. 2. Внешний вид дисплея эхолота

Преобразователь (тран-дюсер) эхолота

Преобразователь является важнейшим элементом эхолота, во многом определяющим его характеристики. Он преобразует энергию электрических высокочастотных импульсов в ультразвуковые колебания и, в то же время, производит обратное преобразование отраженных ультразвуковых сигналов в электрические сигналы.

По способу преобразования электрической энергии в звуковую существуют несколько видов преобразователей, но на малых судах в силу их малых размеров прижились только пьезоэлектрические.

Основным элементом пьезоэлектрического преобразователя является кристалл титаната бария (встречаются кристаллы и из других материалов) цилиндрической формы с нанесенными на его поверхности металлическими покрытиями. Такой кристалл помещается в металлический или пластиковый корпус и заливается хорошо проводящим звук материалом.

Рис. 3. Диаграмма излучения преобразователя

Под воздействием приложенного к рабочим поверхностям кристалла переменного электрического поля в нем возникают упругие колебания, в результате чего кристалл начинает сокращаться и расширяться, вызывая возникновение волн в воде.

Отраженные от дна или каких-либо других подводных объектов волны, воздействуя на кристалл, вызывают появление на его рабочих поверхностях переменного напряжения, поступающего на приемник эхолота.

Принято считать, что преобразователь излучает и принимает звуковую энергию в пределах конуса. На самом деле «конус» – это лишь удобное для пользователей представление характеристики излучения. Реальная диаграмма излучения имеет многолепестковую структуру – главный лепесток, излучающий основную часть энергии, и ряд боковых лепестков (рис. 3).

Виды преобразователей

Используемые в рыбопоисковых эхолотах преобразователи различаются по следующим признакам:

– По составу данных, которые может поставлять преобразователь

– По материалу, из которого сделан корпус преобразователя;

– По количеству лучей;

– По месту установки преобразователя на судне.

Состав данных

Основное назначение преобразователя – получение сигналов о глубине объектов. Однако существуют преобразователи, в корпусах которых устанавливаются дополнительные датчики, позволяющие измерять и передавать в дисплей температуру воды и скорость судна.

Материал

Преобразователи изготавливаются из пластмасс или из металла – латуни или бронзы.

Пластмассовые корпуса обычно используются на судах с корпусами из металла или из стеклопластика. Пластмассовый преобразователь, установленный в деревянный корпус, может быть раздавлен при набухании дерева после спуска судна на воду.

Металлические преобразователи предназначены для установки на суда со стеклопластиковыми или деревянными корпусами. При установке бронзового преобразователя на металлический корпус может возникать электрохимическая реакция, разрушающая корпуса судна и преобразователя в месте их контакта. В преобразователях с металлическими корпусами могут устанавливаться датчики температуры воды и скорости.

Количество лучей

Какое-то время назад эхолоты в основном были однолучевыми. Сейчас они постепенно вытесняются из номенклатуры фирм-производителей двухлучевыми, причем их цена становится сопоставима с ценам однолучевых эхолотов. Два луча получаются за счет наличия двух частот – 50 и 200 кГц, поэтому эхолоты называют двухчастотными. Такие приборы могут работать как на одной из двух частот, так и одновременно на двух.

Существуют так же и экзотические модели производства фирмы Humminberd, в которых формируются три и шесть лучей – для расширения зоны просмотра в первом случае и для создания псевдотрехмерной картины во втором.

Место установки

Существуют три основных способа установки преобразователя – с внутренней стороны корпуса («in-hull»), на транце и на днище («Thru-hull»).

Рабочая частота эхолота

Глубина обнаружения подводных объектов и точность их различения при одинаковой мощности излучения зависит от частоты.

В выпускаемых ранее эхолотах использовались либо высокие (192 кГц – в эхолотах Lowrance и Eagle, 200 кГц – в эхолотах Garmin, Raymarine и др.) либо низкие – 50 кГц. В настоящее время, в связи с широким распространением двухчастотных эхолотов, остались лишь две частоты – 50 и 200 кГц, позволяющие использовать один кристалл для работы на двух частотах одновременно и порознь.

Ширина диаграммы излучения обратно пропорциональна частоте излучения – чем выше частота излучения, тем уже конус, и тем самым выше плотность заключенной в нем звуковой энергии, а отсюда – большая глубина и лучшая способность обнаружения мелких объектов, более подробное отображение на экране.

При работе на низких частотах ширина конуса намного шире и, соответственно, плотность энергии в конусе меньше со всеми вытекающими отсюда последствиями. Но, с другой стороны, более широкая диаграмма излучения позволяет обнаруживать рыбу в более широкой зоне, чем при работе на высокой частоте.

Появление двухчастотных эхолотов позволило объединить достоинства каждой из частот в одном приборе и избавило покупателя от необходимости разрешать проблему выбора эхолота с широким или узким лучом. Современные двухчастотные (двухлучевые) эхолоты позволяют работать с одним из двух имеющихся лучей, а также с обоими сразу.

Фирмы-производители рыбопоисковых эхолотов обычно выпускают большое количество моделей преобразователей с различными углами излучения. Так, компания Garmin предлагает преобразователи на частоте 200 кГц с углами конуса от 8 до 20 градусов, на частоте 50 кГц – с углом 45 градусов. Двухлучевые эхолоты этого производителя имеют ширину луча 15 и 45 градусов. Примерно такие же показатели имеют преобразователи и других фирм. Следует отметить, что преобразователи производят и поставляют всем изготовителям эхолотов несколько специализированных фирм.

Влияние среды распространенияультразвуковых волн

Вода, являясь средой распространения созданных преобразователем ультразвуковых волн, оказывает существенное влияние на работу эхолота, поэтому знание особенностей прохождения волн в воде полезно владельцу для эффективного использования прибора.

На эффективность работы эхолота оказывают влияние следующие характеристики среды распространения:

- Затухание энергии звуковых волн в воде;

- Наличие отражений звуковых волн в воде.

Затухание энергии

 Затухание звуковой энергии в воде состоит из двух составляющих – затухание свободного пространства и затухание в среде распространения.

Затухание свободного пространства – это абстрагированное от среды распространения, зависящее только от дальности, ослабление звуковой энергии.

При активной гидролокации, когда звук проходит одно и то же расстояние дважды, затухание свободного пространства пропорционально четвертой степени глубины.

Затухание энергии звуковых волн в воде объясняется ее поглощением и рассеиванием находящимися в воде минеральными и органическими частицами, микроорганизмами и пузырьками воздуха.

Наименьшее затухание вносит пресная холодная вода – из-за низкой температуры она обладает более высокой плотностью и в ней находится минимум органики. В пресной воде с одинаковым успехом можно пользоваться эхолотами как с низкой, так и с высокой частотами излучения.

Соленая морская вода, напротив, содержит большое количество солей, планктона и минеральных частиц, особенно в хорошо прогретых верхних слоях моря, поглощающих и рассеивающих энергию звуковых волн. Значительное ослабление энергии в соленой воде вносят содержащиеся в ней пузырьки воздуха, возникающие при образовании ветровых волн.

Наличие отражений

Отражения в любой среде – в воде, в воздухе – образуются неоднородностями, отличными по плотности от среды. Ими могут быть какие-либо предметы (камни, грунт, рыба, растительность, воздушные пузыри), либо слои воды с разной температурой (так называемые термоклины, речь о которых пойдет позже). В глубоких водоемах может быть несколько тер-моклинов.

Если в пресной воде затухание звуковой энергии на разных частотах практически одинаковы, то в морской воде затухание и отражение от термо-клинов с ростом частоты увеличивается. Поэтому в эхолотах, предназначенных для поиска рыбы в море, используются частоты 50 кГц, а в некоторых профессиональных эхолотах для больших глубин применяется частота 28 кГц.

Отражающие свойства дна

Дно пресноводных водоемов и морей имеет неоднородную структуру, включающую разнообразные по плотности грунты – ил, песок, глину, каменную плиту, галечные россыпи, покрытые, как правило, разнообразной растительностью. Все эти виды грунтов имеют разную способность отражать и поглощать звуковые волны. Камни и глина хорошо отражают звуковые волны, создавая на экране широкую линию. Мягкие грунты – ил и песок, а также растительность плохо отражают волны, создавая на экране тонкую линию. В то же время мягкие грунты проницаемы для ультразвука, потому на экране эхолота можно наблюдать под ними более плотные подстилающие поверхности.

Влияние расположения преобразователя

Преобразователь с установкой внутри корпуса

 Преобразователи «in-hull» прикрепляются прямо к внутренней стороне корпуса судна. Они применяются только на судах с корпусом из стеклопластика. Преобразователи этого типа не подходят для судов с металлическим и деревянными корпусами, а также с многослойными стеклопластиковыми корпусами с пористым наполнителем.

Преобразователь «In-Hull» обычно крепится к стеклопластиковой обшивке с помощью эпоксидного клея. Применение пластичных герметиков для его крепления недопустимо из-за их плохой акустической проводимости. Преобразователи необходимо устанавливать так, чтобы между ними и водой была только обшивка корпуса без каких-либо усиливающих или повышающих плавучесть вставок.

При использовании преобразователя «In-hull» звуковые волны проходят через стеклопластиковую обшивку корпуса, теряя при этом часть энергии, в результате чего снижается максимальная глубина и возможность обнаружения рыбы.

Преобразователь с установкой на транец

Преобразователи этого типа (рис. 4.) используются, как правило, на небольших тихоходных судах.

                                     

Рис. 4. Преобразователь с установкой на транец

Преобразователи этого типа устанавливаются на расположенный на транце специальный кронштейн ниже уровня воды. Конструкция кронштейна позволяет преобразователю откидываться при наезде на какое-либо препятствие, предотвращая тем самым повреждение преобразователя и транца.

Достоинства такой установки – простота монтажа, демонтажа и обслуживания.

Недостаток – нахождение рядом с гребными винтами, вращение которых приводит к возмущениям воды, снижающим эффективность преобразователя. Если на малых оборотах еще можно найти подходящее место на транце, то на больших и скоростных судах работающие на больших оборотах винты создают сильное возмущение воды, насыщают воду пузырьками воздуха, которые экранируют преобразователь, практически исключая возможность работы. 

Преобразователь с установкой на корпусе («Truehull»)

Устанавливаемые на корпус преобразователи типа «True Hull» (рис. 5) вставляются в отверстие, вырезанное в днище судна.

 

Рис. 5. Преобразователь с установкой на корпусе

Этот тип преобразователя обладает наилучшими характеристиками, но и наибольшей ценой. Они предназначены для установки на большие и скоростные суда с подвесными и стационарными двигателями. Размещаются обычно на плоской части днища перед винтами в местах с плавным обтеканием водой. Если судно имеет V-образные обводы, то для горизонтального расположения преобразователя используют специальные прокладки из пластмассы, что на большой скорости приводит к появлению кавитации и, соответственно, к снижению эффективности эхолота (о кавитации – см. ниже). Для улучшения обтекаемости излучателя существуют специальные обтекатели, снижающие турбулентность и кавитацию.

Достоинством такого преобразователя - высокая эффективность и качество сигнала.

Недостаток - сложность установки и обслуживания, необходимость регулярной очистки от обрастания водорослями.

Влияние скорости движения на работу преобразователя

Перед рыбакам, профессионалами и любителями долгое время никаких проблем, связанных с использованием эхолотов на их судах, не возникало – скорости у тех и других были невелики. Но по мере роста скоростей владельцы эхолотов стали замечать нарушения в работе эхолотов – пропадания отражений, появление шумовых помех на экране, ослабление отраженных сигналов.

Главным источником таких помех является кавитация – нарушение непрерывности текущей жидкости. При движении правильно сконструированного судна в воде его подводная часть обтекается плавно. Если на корпусе имеются какие-либо выступающие части – фланец заборной или сливной трубы, заклепки, головки болтов и пр., вокруг них при движении начнут образовываться завихрения, т. е. поток станет турбулентным, а при достижении какой-то критической скорости начнут возникать наполненные паровоздушной смесью кавитационные пузырьки, переходящие в каверны. Воздушные пузырьки, вследствие малой плотности заполняющего их газа, отражают звуковые волны и частично или полностью маскируют пространство под судном.

Наиболее подвержены помехам преобразователи, устанавливаемые на транце: мало того, что они сами являются источником кавитации, они еще получают все пузырьки, образовавшиеся на корпусе судна. Но основным источником помех для транцевого преобразователя является высокооборотный гребной винт.

В наилучшем положении находятся преобразователи «In Hull» и «True Hull» при их правильном расположении в местах с плавным обтеканием. При установке преобразователя «True Hull» на скоростных судах его рабочая поверхность, во избежание образования на нем кавитации, не должна выступать из корпуса, но и не должна располагаться в углублении.

Чувствительность эхолота

Понятие «чувствительность» характеризует способность эхолота выделять слабые отраженные сигналы на фоне акустических помех и шумов приемника. Величина чувствительности определяет возможность обнаружения мелких предметов на больших глубинах.

Приемник эхолота работает в очень широком диапазоне напряжений – ведь мощность принимаемых отраженных сигналов пропорциональна четвертой степени глубины. Поэтому он должен хорошо принимать слабые сигналы от мелких предметов как на максимальных глубинах, так и на предельно малых.

Необходимость работы в столь широком диапазоне уровней сигналов приводит к определенному противоречию в выборе чувствительности. С одной стороны, высокая чувствительность позволяет получать большое количество информации о различных объектах на предельно больших глубинах, но, вместе с тем, на малых глубинах такой эхолот будет принимать сигналы вне главного луча боковыми лепестками диаграммы направленности преобразователя.

Для устранения этого противоречия в эхолотах имеется регулировка чувствительности, которая в недалеком прошлом осуществлялась вручную. В современных эхолотах в дополнение к ручной регулировке имеется автоматическая.

Автоматическая регулировка устанавливает чувствительность по уровню отражений от дна так, чтобы на экране были отметки от рыбы и дна. Изменение чувствительности осуществляется автоматически в соответствии с изменениями глубины и состояния воды. Автоматический режим обеспечивает нормальную работу эхолота практически во всех ситуациях, поэтому он, в основном, и используется. При необходимости, этот режим может быть отключен, и регулировка будет осуществляться вручную.

Установка эхолота

После того как мы познакомились с принципом работы, устройством и характеристиками рыбопоисковых эхолотов, можно перейти к самой интересной части – знакомству с основами их эксплуатации. Поскольку изделия различных производителей незначительно отличаются друг от друга, за основу возьмем какую-либо распространенную модель, например, из серии эхолотов Garmin.

В данном разделе мы рассмотрим способы установки преобразователей и методы общения с эхолотом в процессе работы.

Установка излучателя

Правильная установка преобразователя является ключевой по важности операцией для обеспечения эффективной работы эхолота. Не следует устанавливать преобразователь позади заклепок, ребер, отверстий для забора воды или других неровностей на днище, которые могут создавать облака воздушных пузырьков и образовывать завихрения воды. Очень важно, чтобы преобразователь работал в спокойном потоке воды, иначе его возможности будут серьезно ухудшены.

Установка преобразователя на транец

Транцевый преобразователь поставляется со специальным кронштейном для крепления к транцу. Кронштейн обычно имеет подпружиненный элемент, позволяющий преобразователю откидываться назад при наезде на какое-либо препятствие.

Основные принципы установки преобразователя показаны на рис. 6.

Рис. 6. Принцип установки преобразователя на транец

Установка преобразователя «In Hull» в корпусе

На стеклопластиковых судах для удобства эксплуатации можно устанавливать преобразователь в корпусе. Некоторые фирмы выпускают для этого специальные приборы, но с таким же успехом внутри корпуса можно установить обычный транцевый преобразователь. На многих пластиковых малых судах имеются специально приготовленные места для установки преобразователя.

Часто пластиковые корпуса имеют в своей структуре усиливающие элементы или пористые наполнители, препятствующие распространению ультразвука, поэтому прежде чем приклеивать преобразователь, проверьте это место следующим образом. Налейте в трюм, в место предполагаемой установки, некоторое количество воды, опустите в нее рабочую поверхность преобразователя и проверьте наличие на экране изображения подводного пространства. Сравните полученные значения глубины с реальными. Если разницы нет, то смело можете приклеивать преобразователь в это место.

Установка преобразователя «True Hull» в корпус Преобразователи «True Hull» устанавливают в высверленное в днище судна отверстие. Наружные и внутренние поверхности корпуса около отверстия покрываются слоем герметика, преобразователь с кабелем вставляется в отверстие и крепится через шайбу гайкой.

Преобразователи должны крепиться горизонтально перед винтом, килем и любыми выступами, которые могут быть причиной образования пузырьков воздуха. Если поверхность днища наклонная, преобразователь ставят с помощью горизонтирующих прокладок. Для больших бронзовых преобразователей выпускаются специальные обтекатели (рис. 7).

Рис. 7. Обтекатель для бронзового преобразователя

Эксплуатация эхолота

Отображаемая информация

Современный рыбопоисковый эхолот может получать и отображать самую разнообразную информацию о состоянии водной толщи и находящихся в ней объектах. Ниже перечислено то, что можно увидеть на экране дисплея (рис. 8).

Рис. 8. Изображение на экране эхолота

Управление эхолотом

Управление эхолотом осуществляется с помощью нескольких кнопок и экранных меню (рис. 9).

Рис. 9. Органы управления эхолота

Рис. 10. Панель управления и информация на экране

В верхнем левом углу экрана (рис. 10) можно видеть панель управления и различную информацию, в том числе глубину напряжение источника питания, температуру воды и скорость движения (при наличии соответствующих датчиков). В правой части экрана находится линейка шкалы глубин и функция «Луч». Символы сигнализации или системных сообщений представлены под изображением дна.

Теперь познакомимся с основным опциями экрана, с помощью которых осуществляется управление работой эхолота.

Управление эхолотом

Это меню (рис. 11), дающее доступ к установкам, наиболее часто используемым в работе эхолота – к шкале глубин (Depth Range), масштабирования (Zoom) и чувствительности/усиления (Gain). Для этого на панели управления кнопками-стрелками < и >»передвигают курсор (белое поле) на нужную опцию. Выбор желаемой установки осуществляется стрелками «^и V».

Шкала глубин (Range)

Шкала глубин (рис. 11) необходима для установки и просмотра на экране определенных участков толщи воды. Установка осуществляется курсором на раскрывающемся в левой части экрана меню глубин. Впрочем, прибор может автоматически выбирать шкалу, соответствующую глубине под судном в настоящий момент и изменять ее при движении судна – для этого достаточно установить курсор шкалы глубин на «Auto» и нажать «Enter».

Рис. 11. Меню панели управления

Масштаб (Zoom)

Функция «Масштаб» используется для выбора степени увеличения изображения отдельных интересующих участков на экране. Функция «Масштаб» позволяет увеличить все объекты в выбранном диапазоне глубин. Величина масштаба устанавливается в раскрывающемся меню. После установки экран делится на две части, на одной из которых ведется полномасштабный просмотр, а в другом – только выбранный участок в установленном масштабе (рис. 12).

Рис. 12. Функция «масштаб» на экране эхолота

Усиление, чувствительность (Gain)

 Ранее уже говорилось о влиянии чувствительности на эффективность работы эхолота. Высокая чувствительность позволяет получать большое количество деталей, но может привести к появлению шумов в виде засветки экрана и к приему отражений от предметов, расположенных в стороне от судна боковыми лепестками, Поэтому во всех приборах имеются органы для ее регулировки. В данном приборе чувствительность устанавливается стрелками в раскрывающемся окне GAIN (рис.13).

Рис. 13. Установка чувствительности эхолота

По умолчанию в эхолоте устанавливается нормальный уровень чувствительности, соответствующий положению Normal Gain на шкале в левой части экрана. При необходимости получить большее количество деталей следует увеличивать чувствительность, выбирая на шкале положительные значения настроек, при необходимости уменьшения чувствительности следует выбирать отрицательные значения.

Меню установок содержит также настройки эхолота, которые не требуют частых регулировок. Сюда входят настройки «Изображение»(Chart), «Инструменты» (Tools), «Цифры» (Nambers), «Сигнализация» (Alarm), «Системные настройки» (System), «Калибровка» (Calibr), «Единицы измерения» (Units) и «Управление памятью» (Memory), «Символ рыбы» (Fish Symbols). Если эхолот двухчастотный, то в состав меню войдет еще и установка частоты. Рассмотрим некоторые из них.

Изображение (Chart)

Данная настройка устанавливает скорость прокрутки, т. е. скорость обновления информации на экране. Осуществляется это с помощью функции Scroll Speed, позволяющей выбрать одну из трех скоростей – быструю (Fast), среднюю (Medium) и медленную (Slow) в соответствии с условиями работы.

Частота (Frequency)

Эта позиция меню предназначена для выбора частоты излучения – высокой частоты 200 кГц (устанавливается по умолчанию), низкой частоты 50 кГц или обоих сразу.

Символы рыбы (FishSymbols)

Эта установка позволяет пользователю выбирать отображать подводные объекты в виде символов-рыбок, либо в виде отраженных сигналов (дуг). Выбор осуществляется в раскрывающемся меню с символами рыб и позицией «Off» – выключить. В этой позиции на экран эхолота будут выводиться все принятые отраженные сигналы. При выборе любого символа при обнаружении любого объекта на экране будут появляться только символы рыб. Если эхолот будет работать в двухчастотном режиме, то рыбы, облучаемые узким лучом, будут черными, а облучаемые только широким лучом – белыми.

Белая линия (Whiteline)

Функция Whiteline позволяет определять структуру слоев породы, составляющих дно. Если при выключенной функции дно отображается черным цветом, то при включении этой функции дно будет рисоваться в соответствии с плотностью его слоев оттенками черного и серого цветов.

Инструменты (Tools)

Функция Tools имеет четыре набора инструментов – «Линия глубины» (Depth Line), «Луч» (Flasher), «Имитатор» (Simulator) и «Шумоподавитель» (Noise Reject), помогающих распознавать подводные объекты.

Инструмент Depth Line используется для определения глубины до объекта или для его выделения. Представляет горизонтальную линию, управляемую кнопками-стрелками. Положение линии на оси глубин в цифровой форме отображается в информационном окне на экране.

Активированный инструмент «Flasher» (Луч) создает изображение на вертикальной полосе. Этот инструмент позволяет яснее представлять на экране детали водной толщи и поверхности дна.

Функция «Noise Reject» (Шумоподавление) позволяет удалять с экрана нежелательные помехи. Установка режима шумоподавления может осуществляться автоматически и вручную. Следует иметь в виду, что при высоких уровнях подавления может быть потеряна часть малых объектов.

Инструмент «Simulator» используют для изучения эхолота и отработки навыков работы с ним.

Сигнализация об обнаружении рыбы (Alarm)

 Эхолот может подавать звуковые сигналы об обнаружении рыбы. Сигнализация может быть настроена на обнаружение различных по размеру рыб (маленькая, средняя, большая и в различных вариантах). Сигнализация будет работать независимо от включения функции Fish Symbols.

Помимо этого эхолот может подавать сигналы тревоги при изменении измеряемой глубины меньше заданного значения или при превышении его.

Изображение на экране эхолота

Для работы с эхолотом очень важно понимать, что мы можем реально видеть на экране и не ожидать большего, чем он может дать. Чтобы разобраться во всем этом, вспомним, с чего мы начали наше знакомство с эхолокацией – со способа излучения и приема.

Как уже кратко отмечалось в главе «Устройство и характеристика эхолотов», преобразователь эхолота излучает звуковые волны в направлении дна. Область, покрываемая излучением, условно описывается конусом с вершиной в излучателе и зависит от величины этого угла и глубины водоема. На рисунке 5 показаны сечения конусов плоскостями на разных глубинах для преобразователей с частотой 50 кГц и углом конуса 20°, и с частотой 200 кГц и углом конуса 10°. При использовании таких преобразователей поверхности покрытия на глубине 9 м будут представлять соответственно круг диаметром 6 и 1,8 м.

Для пользователя очень важно понимать, что в соответствии с принципом действия эхолот измеряет только одну координату – глубину, и поэтому не может давать пространственную картину водного пространства в конусе излучения (рис. 14). Прибор не может определить, где в пределах конуса находится рыба, где водоросли, а только лишь сообщает, что они находятся на одной глубине. Особенно важно помнить об этом при использовании преобразователей с широкими диаграммами направленности.

Рис. 14. Картина в конусе излучения

Определение типа дна эхолотом

Эхолот может распознавать тип дна под ним – твердый грунт, ил, водоросли. Твердые породы лучше отражают звуковые волны, чем мягкий ил или песок. Слой твердого дна будет показан на экране более широкой полосой, чем у мягкого дна.

Для улучшения распознавания сильных и слабых сигналов в эхолотах существует функция White Line – «Белая линия» (в ряде случаев используется термин «серая линия»). При включении этой функции дно отображается оттенками черного и серого цвета. Например, ил на дне дает слабый отраженный сигнал, который отображается на экране с тонкой серой окантовкой, а изображение твердого дна изображается с широкой серой окантовкой.

Функция «Белая линия» позволяет определить структуру слоев пород, составляющих дно. Получая сведения о сравнительной плотности этих слоев, можно точнее определить их структуру.

Определение  рыбы эхолотом

При правильно установленном преобразователе и должной настройке эхолота рыба будет отображаться на экране в виде дуг. Такое изображение получается из-за изменения расстояния до рыбы при ее прохождении через конус излучения. При пересечении границы конуса расстояние от нее до преобразователя будет максимальным.

По мере подходу к оси конуса расстояние будет уменьшаться, что будет отображаться на экране. После прохождения оси расстояние до рыбы начнет увеличиваться, в результате чего на движущейся развертке экрана появится изображение дуги.

Размер и кривизна дуги зависит от ширины диаграммы направленности преобразователя. Чем шире конус излучения, тем более ярко выражена дуга.

При вхождении рыбы в конус излучения ее изображение будет тонким из-за ослабления мощности на краях диаграммы. При ее приближении к центру толщина дуги будет увеличиваться и, в центре диаграммы станет наибольшей. При выходе рыбы из зоны излучения картина будет изменяться в обратном порядке – уменьшаться.        

Если рыба проходит по краю конуса, то дуги может не получиться или она будет очень небольшой. Наличие в эхолотах функции Fish Symbols позволяет отображать принятые сигналы в виде символов – «рыбок» различных размеров. Эта функция может использоваться только при работе эхолота в автоматическом режиме. При включенной функции Fish Symbols отображает только символы, не выводя на экран никакие другие отметки.

Ряд моделей рыбопоисковых эхолотов имеют возможность подключения датчиков бокового обзора. В этом случае они могут вести обнаружение рыбы не только под судном, но и по обеим сторонам от него.

Эхолот для рыболова

Эхолот ищет и находит рыбу, и это является его основным предназначением. Однако каждый мало-мальски грамотный рыбак знает, что рыба не распределяется равномерно по пространству водоемов, а собирается в определенных местах, определяемых рельефом дна, резкими изменениями глубин и даже перепадами температур между слоями воды. Интерес могут представлять коряги, камни, ямы, растительность. Иными словами, рыба не только ищет, где глубже, но и где ей лучше ночевать, охотиться, маскироваться, кормиться. Поэтому первостепенная задача эхолота – это определение глубин водоема и изучение рельефа дна.

Результаты измерения глубины на экране эхолота осуществляются двумя способами – в графической форме (отображение рельефа дна на фоне шкалы глубин) и в цифровой форме в углу экрана. Следует иметь в виду, что при работе эхолота на предельно малых глубинах могут возникнуть проблемы с измерениями, связанными, в первую очередь, с наличием у любого эхолота «мертвой зоны», а также наличием сильных отражений от находящихся вне конуса излучения предметов и участков дна, облучаемых боковыми лепестками диаграммы. Такие помехи особенно заметны в эхолотах, не имеющих автоматической регулировки усиления.

Отображение рельефа дна

При измерении глубины вдоль правой границы экрана отображается в виде точки текущее значение измеряемой глубины. Для обеспечения возможности наблюдения за рельефом эта точка сохраняется на экране и сдвигается по нему справа налево на один шаг, а ее место занимает новая точка, соответствующая очередному отсчету глубины. Затем происходит следующий сдвиг – так запоминается каждая последующая точка через промежутки времени, равные периоду следования зондирующих ультразвуковых импульсов. В результате на экране появляется линия, являющаяся отображением рельефа дна. Следует особо отметить, что полученная линия отображает рельеф на пути, уже пройденным судном, что следует учитывать при выборе позиции для ловли.

Следует также иметь в виду, что текущее значение глубины под судном отображается на шкале на правой стороне экрана. Это значение повторяется так же на экране и в цифровой форме.

Если судно неподвижно, то глубина под ним не меняется и, следовательно, линия будет прямой и горизонтальной (рис. 15).

При движении судна над неровным дном отметка глубины в правом углу экрана будет менять свое положение соответственно изменению глубины под датчиком эхолота. При уменьшении глубины каждая последующая точка будет располагаться выше предыдущей, при увеличении глубины – ниже предыдущей. В результате на экране появляется линия, повторяющая рельеф дна на пути следования судна.

Рис. 15. Изображение на экране при неподвижном судне

Для рыбака наибольший интерес представляют самые различные неоднородности рельефа дна, так как на них чаще всего ловиться рыба. Это могут быть песчаные «косы», намываемые течением с внутренней стороны на повороте реки, и резкие переходы на подмытых течением внешних берегах. Места с такими резкими переходами должны интересовать рыбака, т. к. на них может находиться крупная рыба.

На озерах Карелии и Белом море часто встречаются подводные скалы самых разных размеров – небольшие «луды и корги», и обширные галечные либо каменистые «банки» – любимые места крупной хищной рыбы. Недаром профессиональный лов рыбы в море ведется, в основном, на банках. Автору этих строк как-то довелось на одной луде в Белом море в компании двух приятелей за каких-то 20 минут наловить на голые крючки ведро трески.

Еще один предмет поиска для рыбака – это ямы, в которых может находиться крупная хищная рыба.

Вообще, любые резкие изменения глубин привлекают рыбу и позволяют надеяться на ее обнаружение на данных участках. При ведении поиска с использованием эхолота следует искать участки, отличающиеся от преобладающего рельефа дна. На мелких участках нужно искать впадины и ямы, на глубоких участках – гребни, косы, луды, перекаты, на изрезанных участках – ровные площадки.

Еще один важный показатель, позволяющий определить перспективность того или иного участка для лова рыбы – структура дна. Структура дна говорит о том, из каких грунтов состоит дно – глина, песок, ил, скала или галька. С помощью эхолота точно распознать тип грунта невозможно, можно только различать его по плотности. На экране эхолота плотный грунт (глина, камень) отображается светлым тоном, а мягкие грунты – темным. По наличию ила и растительности можно судить о том, какая рыба может водиться на данном участке.

Большой интерес для рыбака представляют коряги или затонувшие стволы деревьев, около которых с большой степенью вероятности можно обнаружить рыбу. Они отличаются по плотности от грунта и обычно хорошо видны на экране эхолота (рис. 16). Такие предметы целесообразно запоминать в памяти приемника GPS, т. к. их повторное обнаружение осуществить намного сложнее, чем косу или перекат. То же самое относится и к другим относительно малоразмерным объектам – лудам, ямам и т. п.

Рис. 16. 

Отображение рыбы

Ранее уже упоминалось, что на экране эхолота рыба отображается в виде дуг. Это происходит из-за того, что при прохождении рыбы через конус излучения расстояние от нее до преобразователя меняется – сначала оно уменьшается, а затем увеличивается снова. Поскольку по мере удаления от оси диаграммы направленности преобразователя энергия излучения убывает, то при прохождении рыбы через облучаемую зону толщина дуги изменяется – сначала она увеличивается, затем снова уменьшается. Размер дуги зависит, прежде всего, от ширины конуса излучения – чем шире конус, тем длиннее дуга (рис. 17), а также от скорости движения рыбы относительно судна. Чем выше эта скорость, тем слабее и бледнее эта дуга. Поэтому, при поиске рыбы с катера на ходу, получив на экране слабые дуги, стоит вернуться и на малой скорости пройти это место.

На форму дуги могут влиять и характерные особенности рыбы, позволяя, при наличии опыта, с некоторой вероятностью, определять вид рыбы, хотя не все опытные рыбаки разделяют эту точку зрения. Возможно, и проводились какие-либо теоретические и экспериментальные работы по распознаванию видов рыб с использованием эхолотов в интересах промыслового рыболовства, но мне такие материалы не встречались. Да и задачи обнаружения и распознавания профессионала и рыбака-любителя совершенно разные.

Рис. 17. Принцип образования дуги

В некоторых моделях эхолотов с цветным экраном (например, в эхолотах Garmin) отраженные сигналы окрашиваются различным цветом в зависимости от уровня их мощности. Красным цветом обозначаются самые мощные сигналы, оранжевым – сильные, желтым – средние, зеленым – слабые и синим – самые слабые. В монохромных версиях тех же эхолотов уровни принимаемых сигналов обозначаются Оттенками серого цвета – чем сильнее сигналы, тем темнее его отметка, и наоборот.

Обобщая имеющиеся в прессе материалы по распознаванию рыбы и результаты опроса среди пользователей эхолотов, можно сделать следующие предположения.

Многие представляют щуку как смещенную в один конец толстую дугу, сома – как одинокую толстую дугу. Некоторые виды рыб изображаются на экране эхолота в виде нескольких тонких дуг – например, судак или лещ. Однако, при отсутствии каких-либо экспериментальных данных достоверность этих оценок невелика.

Поскольку однозначно распознать рыбу невозможно, то для повышения достоверности оценки необходимо одновременно сопоставлять полученную дугу с рельефом и структурой дна, характерным для обитания тех или иных видов рыб. Такая работа требует большого опыта работы с эхолотом, понимания характерных особенностей, повадок и привычек различных рыб.

Для облегчения обнаружения и распознавания для рыбаков с малым опытом в большинстве любительских эхолотов имеется функция отображения обнаруженной рыбы в виде символов – «рыбок» различных размеров. Они формируются путем анализа по определенным алгоритмам мощности отраженных от подводных объектов сигналов. В большинстве эхолотов используются три градации размеров – мелкая, средняя и крупная, обозначаемые соответствующими символами.

Рис. 18. Изображение символов на экране двухлучевых эхолотов

Однако не следует считать, что, включив режим автоматического распознавания, можно будет получить от эхолота достоверную информацию о размере рыбы – автомат, он и есть автомат, вырабатывающий по уровню мощности отраженных сигналов символы установленных размеров. Уровень мощности отраженных сигналов зависит от множества факторов – от степени загрязнения воды, от наличия в ней планктона, растительности, температурных перепадов, которые эхолот не учитывает при анализе принимаемых сигналов. Помимо этого, прибор не различает всех тонких нюансов отраженных сигналов, которые легко распознает глаз человека, поэтому он может присваивать символы рыб дрейфующим в воде топлякам, воздушным пузырям, водорослям.

Символы в монохромных эхолотах обычно окрашены в черный цвет. В двухлучевых эхолотах символы рыб, полученные узким лучом, будут закрашены, а полученные широким лучом – будут обозначены в виде контура (рис. 18).

Еще одна проблема автоматического распознавания заключается в невозможности определения размера рыб, обозначаемых самым крупным символом – он может быть присвоен и килограммовому окуню, и сому весом несколько десятков килограммов.

Для распознавания крупных экземпляров рыб в некоторых современных эхолотах имеется функция реального сканирования. Приборы, оснащенные такой функцией, выдают на экран изображение рыбы, пропорционально ее истинному размеру. Имея шкалу глубин, можно достаточно легко определить размер рыбы.

В заключение рассуждений на тему автоматического распознавания следует отметить, что самым лучшим устройством для этого пока еще является человеческий глаз и мозг – недаром в профессиональных эхолотах на экран выводятся только отображения реальных сигналов.

Масштабирование

Масштабирование является весьма эффективным приемом для наблюдения за рыбой. Сущность масштабирования заключается в увеличении (растягивании) отдельных выделенных по глубине участков в несколько раз обычно в два и в четыре раза. Для осуществления этой операции в эхолотах существует функция «ZOOM» (масштаб). Картину с измененным масштабом можно рассматривать на полном экране, а также в режиме с разделенным экраном, когда на одной половине экрана будет полномасштабное изображение, а на второй половине – увеличенный вдвое или в четыре раза выбранный участок изображения (рис. 19), что очень удобно для просмотра интересующих мест – покрытых растительностью, коряг, ям.

Рис. 19. Изменение размера разделенного экрана эхолота

В эхолотах существует еще одна интересная функция, которую так же можно отнести к автоматическому распознаванию – функция «Alarm» (сигнализация), позволяющая подавать звуковые сигналы при наступлении каких-то заранее установленных событий. Такими событиями могут быть:

– Появление на экране изображения рыбы определенного размера;

– При вхождении в район со слишком малой глубиной, либо со слишком большой;

При выходе из заданного диапазона глубин («Дрейф»).

Для более внимательного изучения изображения отраженных сигналов в некоторых моделях эхолотов существует функция остановки изображений («Режим паузы»). В этом режиме активизируется стрелка-курсор, который можно перемещать по остановившейся картинке и отмечать путевые точки (если к эхолоту подключен приемник GPS), а также глубину и координаты отмеченных курсором отметок отраженных сигналов. Функция паузы облегчает поиск таких объектов, как сваи, камни, коряги, которые могут оказаться полезными при выборе места для рыбалки.

Пока дисплей находится в режиме паузы, прибор продолжает обновлять показания глубины, однако новые данные не могут быть показаны на экране до тех пор, пока не будет отключен этот режим.

zarech63.ru

Устройство и основные принципы работы эхолота

Люди занимаются рыболовством уже тысячи лет. Перед всеми, кто удит рыбу, стоит одна и та же задача – найти рыбу и сделать так, чтобы она клюнула на наживку. Эхолот, конечно, рыбу за вас не поймает, зато поможет ее найти.

Принцип действия

Эхолот по-английски «sonar». Этот термин является сокращением от словосочетания «SOund» (звук), «NAvigation» (навигация) and Ranging (определение расстояния)». Эхолоты были созданы как средство слежения за субмаринами во время Второй мировой войны. Эхолот состоит из передатчика, преобразователя, приемника и экрана. Вкратце работу эхолота можно описать так. Электрический импульс от передатчика преобразуется преобразователем в звуковую волну и посылается в воду. Если эта волна ударяется о какой-то предмет, она отражается. Эхо попадает в преобразователь, который преобразует его обратно в электрический сигнал, усиливаемый приемником и подаваемый на экран. Поскольку скорость звука в воде является величиной постоянной (около 1,575 км/сек), то, замерив промежуток времени между передачей сигнала и получением эхо, можно вычислить расстояние до предмета. Этот процесс повторяется много раз в секунду.

Наиболее часто в эхолотах используется частота 192-200 кГц, однако в некоторых моделях применяется частота 50 кГц. Хотя эти частоты находятся в пределах звукового спектра, ни человек, ни рыба их не ощущают (поэтому не волнуйтесь, что эхолот вспугнет вам рыбу – она его просто не услышит). Как сказано выше, эхолот посылает и принимает сигналы, затем «отражает» эхо на экране. Поскольку это происходит много раз в секунду, на экране эхо представляется в виде непрерывной линии, отображающей сигнал, поступающий со дна. Помимо него, на экране отображаются эхосигналы от всех встретившихся ну пути объектов между поверхностью воды и дном. Зная скорость прохождения звука в воде (около 1,575 км/сек) и время, требующееся для приема эхо, прибор может вычислить глубину воды и определить наличие в ней рыбы.

Работа системы в целом

Высококачественный эхолот состоит из четырех базовых компонентов: • мощного передатчика; • эффективного преобразователя; • чувствительного приемника; • экрана с высоким разрешением и контрастностью. Все части системы должны быть сконструированы в расчете на совместную эксплуатацию при любых погодных условиях и экстремальных температурах. Высокая мощность передатчика увеличивает вероятность того, что вы получите ответное эхо в глубокой воде и при плохой погоде. Она позволит вам различить мелкие детали, например, мелкую рыбешку и подводные предметы. Преобразователь должен не только справляться с высокой нагрузкой от передатчика, но и преобразовывать электрическую энергию в звуковую с минимальными потерями в силе сигнала. С другой стороны, преобразователь обязан «слышать» слабейшие эхо, отражающиеся от глубин и мельчайшей рыбешки. Приемнику также приходится иметь дело с очень широким диапазоном сигналов. Он ослабляет слишком сильный сигнал от передатчика и усиливает слабые сигналы, поступающие от преобразователя. Кроме того, он различает оказывающиеся слишком близко к друг другу объекты и показывает их в виде индивидуальных импульсов на экране. Экран должен иметь высокое разрешение (вертикальные пиксели) и высокую контрастность, чтобы картинка на нем была четкой и детальной (например, чтобы можно было различать дугообразные сигналы от рыб и разные мелкие объекты).

Частота

В большинстве эхолотов в настоящее время используется частота 192-200кГц, и лишь некоторые работают на частоте 50 кГц. У каждой из этих частот есть свои преимущества, однако почти во всех случаях в пресной воде и в большинстве случаев в соленой воде используют диапазон от 192 до 200 кГц. Он обеспечивает наивысшую детальность, лучше всего работает в мелководье и когда судно на ходу, дает меньше шумов и лишних эхо. Кроме того, на более высоких частотах выше разрешение объекта. Например, две плывущие рядом рыбины будут отображены на экране как два отдельных объекта, а не как одно сплошное «пятно». В некоторых случаях оптимальной является частота 50 кГц. Как правило, эхолот с рабочей частотой 50 кГц (при равных условиях и мощности) способен проникать на бóльшие глубины, нежели эхолоты, работающие на более высоких частотах. Это связано с естественной способностью воды поглощать звуковые волны. Звуки более высокой частоты поглощаются быстрее, чем звуки более низкой частоты. Поэтому в более глубоких водах обычно применяются преобразователи 50 кГц. Кроме того, у преобразователей, работающих на 50 кГц, как правило, шире угол охвата, чем у их «коллег», работающих на 192 и 200 кГц. Благодаря этой особенности их удобно применять для слежения за составными даунриггерами, даже на относительном мелководье, поэтому многие рыбаки предпочитают частоту 50 кГц. Предлагаем вашему вниманию сводную таблицу различий между эхолотами, работающими на указанных выше частотах: 192 и 200 кГц • меньшие глубины • узкий угол излучения • лучше разрешение и различение цели • меньшая восприимчивость к шумам 50 кГц • бóльшие глубины • широкий угол излучения • хуже разрешение и различение цели • более высокая восприимчивость к шумам

Преобразователи

Преобразователь выполняет функцию антенны эхолота. Он преобразует электроэнергию от передатчика в звуковой сигнал высокой частоты. Звуковая волна от преобразователя проходит сквозь воду и отражается от находящегося в воде объекта. Когда до преобразователя докатывается ответное эхо, он преобразует звук обратно в электрический сигнал, который посылается на приемник эхолота. Частота преобразователя должна совпадать с частотой эхолота. Другими словами, нельзя использовать преобразователь 50 кГц и даже 200 кГц вместе с эхолотом, рассчитанным на 192 кГц. Преобразователь должен выдерживать мощные импульсы передатчика, преобразовывая как можно большую часть импульса в звуковую энергию. В то же время, он должен быть достаточно чувствительным, чтобы принимать тишайшие эхо. Все это должно происходить на нужной частоте, а эхо на других частотах должны отбрасываться. В общем, преобразователь должен быть очень умелым.

Кристалл

В качестве активного элемента в преобразователе используется искусственный кристал (цирконат свинца или титанат бария). В процессе изготовления химические вещества смешивают и заливают в формы, которые ставят в печь, где химические компоненты превращаются в отвердевшие кристаллы. После охлаждения на обе стороны кристалла наносится проводящее покрытие. К нему привариваются проводки, чтобы кристаллы можно было подсоединить к кабелю преобразователя. От формы кристалла зависит и его частота, и угол его излучения. У круглых кристаллов (используемых в большинстве эхолотов) частота зависит от толщины кристалла, а от его диаметра зависит угол излучения или угол охвата (см. раздел, «Углы излучения»). Например, при частоте 192 кГц кристалл с углом излучения 20° имеет диаметр примерно 2,5см, в то время как для излучения 8° требуется кристалл диаметром приблизительно 5,1см. Все логично. Чем больше диаметр кристалла, тем меньше угол излучения. Именно поэтому преобразователь с углом излучения 20° намного меньше преобразователя с углом излучения 8°, при одинаковой рабочей частоте.

Корпус

Корпуса преобразователей бывают любых форм и размеров. Большинство из них изготавливаются из пластика, однако некоторые из преобразователей, рассчитанных на монтаж в корпус судна, изготавливаются из бронзы. Как мы уже говорили, размер кристалла определяет частоту и угол излучения. В свою очередь, размеры корпуса преобразователя зависят от размеров расположенного в нем кристалла. В настоящее время существует четыре основных типа корпуса преобразователя. Это [1] сквозные корпуса (монтируются сквозь корпус судна), [2] корпуса, прикрепляемые к внутренней стенке корпуса судна, [3] переносные и [4] монтируемые на транце. Преобразователи со сквозным корпусом вставляются в отверстие, просверленное в корпусе судна. Как правило, они снабжены длинным штоком, который пропускают сквозь корпус и закрепляют гайкой соответствующего размера. У плоскодонок монтаж этим и ограничивается. Для вертикальной установки преобразователя по борту судна, имеющего корпус V-образной формы, понадобится деревянный или пластмассовый обтекатель. Сквозные преобразователи обычно устанавливают на судах со стационарным двигателем, впереди рулей, гребных винтов и валов. Преобразователи с корпусами второго типа приклеиваются эпоксидной смолой непосредственно к внутренней стенке стекловолоконного корпуса судна. Звук передается и принимается сквозь корпус судна, при этом работа эхолота становится менее эффективной (глубина действия эхолота будет ниже, чем у эхолота, установленного на транце). Корпус судна должен быть выполнен из твердого стекловолокна. Даже не пытайтесь «пробить» лучами эхолота корпус из алюминия, дерева или стали. Звук не проходит сквозь воздух, поэтому если корпус судна изнутри укреплен конструкцией из дерева, металла или пенопласта, перед установкой эхолота ее придется демонтировать. Еще один недостаток эхолота данного типа заключается в том, что его нельзя оптимально настроить на дугообразные сигналы рыб. Впрочем, наряду с недостатками есть и существенные преимущества. Во-первых, его не поломает корягой или камнем, т.к. он расположен внутри судна. Во-вторых, он, не выступая из корпуса судна и не препятствуя течению, и будучи установлен там, где поток воды плавно обтекает корпус, довольно хорошо, как правило, работает при больших скоростях хода судна. В третьих, он не обрастет. Переносные преобразователи, как видно из их названия, крепятся к корпусу судна временно. Обычно их крепят при помощи одной или несколько присосок. Некоторые переносные преобразователи могут крепиться и к электродвигателю для троллинга. Транцевые преобразователи крепятся на транце судна и находятся в воде, немного ниже днища судна. Среди перечисленных выше четырех типов транцевые преобразователи по популярности лидируют с большим отрывом. Транцевый преобразователь с тщательно продуманной конструкцией будет работать на любом судне (кроме судов со стационарным двигателем), в том числе при высокой скорости хода судна.

Эксплуатация преобразователя на скорости

Годы назад, когда эхолоты для спортивного рыболовства только появились, бóльшая часть рыбачьих судов представляла собой мелкие лодки с подвесными моторами. По-настоящему мощный подвесной мотор развивал 50 л.с., при этом уже тогда большинство эхолотов были переносными, и их было несложно переставлять с лодки на лодку. Это преимущество считалось важнее способности работать на высокой скорости. Тем не менее, по мере совершенствования лодок, все больше людей хотели иметь на борту стационарный эхолот, способный действовать на скоростях, развиваемых лодкой. В связи с этим началась работа над созданием преобразователя, нормально функционирующего независимо от скорости судна.

Серьезным препятствием для работы эхолота на высоких скоростях является кавитация. Если поток воды вокруг преобразователя равномерен, преобразователь без проблем посылает и принимает сигналы. Если же поток воды «вздыбливается» под воздействием непогоды или кромок судна, он становится турбулентным настолько, что воздух отделяется от воды в виде пузырьков. Это явление называется кавитацией. Если над преобразователем (в котором расположен кристалл) проносятся пузырьки воздуха, на экране эхолота отображается «шум». Дело в том, что эхолот предназначен для работы в воде, а не в воздухе. Если же над преобразователем проносятся пузырьки воздуха, сигнал преобразователя отражается от пузырьков обратно на преобразователь. Поскольку воздух граничит с преобразователем, эти отражения очень сильны. Они создают помеху более сильным сигналам, отражающимся от дна, подводных объектов, рыб, из-за чего их становится трудно или невозможно различить. Для решения данной проблемы преобразователю нужен корпус, который вода бы обтекала, не создавая турбулентности. Это достаточно сложно из-за множества требований, предъявляемых к современному преобразователю. Он должен быть компактным, чтобы не мешать подвесному мотору и не препятствовать потоку воды за ним. Он должен быть прост в установке на транце, чтобы при монтаже можно было обойтись минимумом отверстий. Он должен «уметь» откидываться, чтобы избегать повреждений при столкновении с какими-либо предметами. Проблема кавитации не ограничивается формой преобразователя. Корпуса многих судов сами способствуют образованию пузырьков воздуха, которые создают завесу над лицевой частью установленного на транце преобразователя. Эта проблема особенно актуальна для алюминиевых лодок, из-за сотен выступающих из корпуса заклепок, каждая из которых образует свой собственный поток пузырьков, особенно при движении лодки на высокой скорости. Во избежание этой проблемы нужно установить лицевую часть преобразователь таким образом, чтобы поток пузырьков воздуха проходил над ней. Иными словами, кронштейн преобразователя необходимо установить как можно ниже по транцу.

Углы излучения преобразователя

Преобразователь фокусирует звук в луч. Чем дальше вглубь идет звуковой импульс, испускаемый излучателем, тем шире его охват. Если бы вы изобразили его на листе миллиметровки, вы бы увидели, что он образует конус, поэтому угол излучения еще называют углом конуса. Звуковой сигнал наиболее силен вдоль центровой линии (оси) конуса, постепенно ослабевая по мере удаления от центра.

Чтобы измерить угол излучения преобразователя, мощность излучения замеряют в центре или на оси конуса, затем сравнивают с мощностью по мере удаления от центра. Когда мощность падает наполовину (-3 дБ), измеряют угол относительно оси. Угол в диапазоне от –3дБ с одной стороны оси до –3 дБ с другой стороны оси называют углом излучения (конуса).

Отметка половинной мощности –3 дБ считается стандартной в электронной промышленности, и большинство производителей измеряют угол излучения именно таким образом, хотя некоторые берут за основу отметку –10 дБ, где мощность излучения составляет 1/10 от мощности, имеющей место на оси. Угол получается более широким, поскольку замер производится в точке, расположенной гораздо дальше от оси. Эффективность работы преобразователя остается прежней, немного отличается лишь метод измерения. К примеру, на отметке – 3 дБ угол излучения преобразователя составляет 8°, а на отметке –10 дБ он составляет 16°. Устройства с более широким лучом помогут вам увидеть более широкую картину подводного мира, но за счет уменьшения глубины проникновения луча, поскольку мощность передатчика направляется вширь, а не вглубь. Узкоугольный преобразователь не даст вам такого полного представления о том, что творится вокруг, как широкоугольный, однако позволит вам заглянуть значительно глубже. Дело в том, что узконаправленный преобразователь концентрирует мощь передатчика на меньшем участке. У эхолота с широкоугольным преобразователем сигнал, отражающийся от дна, на экране шире, чем у эхолота с узкоугольным преобразователем, поскольку вы наблюдаете более широкий участок дна. Зона охвата широкого угла излучения намного больше, чем зона охвата узкого угла излучения. Высокочастотные преобразователи (192 кГц) бывают как узкоугольными, так и широкоугольными. В пресной воде, как правило, используются «широкоугольники», тогда как для соленой воды подходят только узкоугольные эхолоты. У низкочастотных эхолотов (50 кГц) широта угла излучения варьируется от 30 до 45 градусов. Хотя преобразователь наиболее чувствителен в пределах собственного угла излучения, до вас будут доходить и некоторые эхосигналы из-за этих пределов, правда, не такие сильные.

Состояние воды и дна

От типа воды, в которой эксплуатируется эхолот, в немалой степени зависит его эффективность. Звуковые волны легко перемещаются в прозрачной пресной воде, и в большинстве озер так и происходит. В соленой воде звук поглощается и отражается взвешенными веществами. Наиболее восприимчивыми к рассеиванию звуковых волн оказываются более высокие частоты, которые не в состоянии проходить сквозь соленую воду так же хорошо, как более низкие. Отчасти, проблема эксплуатации в соленой воде состоит в том, что это крайне динамичная среда (фактически, мировой океан). Ветер и течения постоянно перемешивают в ней воду. Под действием волн в воде образуются и перемешиваются пузырьки воздуха, рассеивающие сигнал эхолота. Микроорганизмы, типа водорослей и планктона, рассеивают и поглощают сигнал эхолота. То же самое делают и находящиеся в воде минеральные вещества и соли. На пресную воду тоже воздействуют ветры, течения и живущие в ней микроорганизмы, но все таки меньше, чем на соленую. Ил, песок, растительность на дне поглощают и рассеивают сигнал эхолота, ослабляя ответное эхо. Камень, сланец, кораллы и другие твердые предметы хорошо отражают сигнал эхолота. Вы увидите разницу, взглянув на экран. Мягкое, илистое дно отображается на нем в виде тонкой линии, а твердое, каменистое дно отображается в виде широкой полосы. Работу эхолота можно сравнить с поведением света от фонаря в темной комнате. Когда свет перемещается по комнате, он хорошо отражается от белых стен и ярких твердых предметов, однако если направить фонарь в покрытый темным ковром пол, отражение будет слабее, поскольку ковер поглощает свет, а шероховатая текстура рассеивает его, из-за чего к вам возвращается меньше света.

Температура воды и термоклины

Температура воды оказывает существенное влияние на жизнедеятельность рыб. Рыба хладнокровна, и температура ее тела всегда совпадает с температурой окружающей ее воды. Зимой в холодной воде обмен веществ рыбы замедляется. В этот период ей требуется примерно в четыре раза меньше пищи, чем летом. Большинство рыб не мечут икру, если температура воды не находится в каком-то довольно узком диапазоне. Встроенные во многие наши эхолоты датчики температуры поверхности воды помогают определить температуры верхних слоев воды, являющиеся наиболее благоприятными для метания икры различными породами рыб. К примеру, форель погибает в реках, вода в которых становится слишком теплой. Окунь и другие породы рыб в конце концов погибают, если скапливаются в озерах, вода в которых летом недостаточно прогревается. И хотя некоторые рыбы восприимчивы к перепаду температур меньше, чем другие, у каждой породы есть свой определенный температурный диапазон, в границах которого она пытается оставаться. Собирающуюся у поверхности воды рыбу на глубоких участках привлекает именно благоприятная для них температура. Мы полагаем, что там она чувствует себя наиболее комфортно. В озерах температура в пространстве между поверхностью и дном редко бывает одинаковой. Как правило, за более теплым слоем воды следует более холодный. Граница между двумя слоями называется термоклином. Глубина и толщина термоклина могут меняться в зависимости от времени года и времени суток. В глубоких озерах может иметься два термоклина и более. Это существенно, поскольку многим породам промысловой рыбы нравится располагаться прямо в нем либо немного выше или ниже него. Часто мелкая рыбешка оказывается над термоклином, а более крупная промысловая рыба покоится в нем или чуть ниже. К счастью, на экране эхолота эта разница в температурах отражена. Чем значительнее разность температур, тем четче на экране виден термоклин.

Дугообразные сигналы рыб

Один из вопросов, которые нам задают наиболее часто, звучит так: «Как сделать так, чтобы на экране отображались дуги рыб?» Добиться этого совсем не сложно, требуется лишь некоторое внимание к нюансам, причем не только при настройке эхолота, но и при его монтаже.

Разрешение экрана

Количество вертикальных пикселей, на которые выводится изображение, называется разрешением экрана. Чем больше вертикальных пикселей на экране эхолота, тем четче он будет отображать дугообразные сигналы рыб. В приведенной ниже таблице для двух экранов указаны размеры пикселей и отображаемые ими участки в диапазоне дальности от 0 до 50 футов.

Как видите, при работе эхолота в диапазоне дальности от 0 до 100 футов на одном пикселе экрана представлен больший объем воды, чем при работе в эхолота в диапазоне 0-10 футов. Скажем, если у экрана эхолота 100 вертикальных пикселей, а эхолот работает в режиме 0-100 футов, каждому пикселю соответствует глубина 12 дюймов (ок. 30 см). Рыба должна быть по-настоящему крупной, чтобы при таком диапазоне быть обозначенной на экране в виде дуги! Однако, если сделать изображение мельче, с помощью функции масштабирования расширив диапазон на 30 футов (к примеру, с 80 до 110 футов), каждому пикселю будет соответствовать 3,6 дюйма (ок. 9 см). Теперь, благодаря масштабированию, та же самая рыба обозначается на экране в виде дуги. Размер дуги зависит от размеров рыбы: мелкая будет обозначена маленькой дугой, более крупная – более внушительной дугой и т.д. При пользовании эхолотом с экраном с небольшим количеством вертикальных пикселей на мелководье, рыба, плывущая у самого дна, обозначается отдельной прямой линией. Это связано со слишком маленьким для такой глубины количеством точек. На глубокой воде (где сигнал от рыбы до лодки проходит большой путь), при отображении на экране участка дна в радиусе 20-30 футов, рыбы изображаются в виде дуг, располагающихся возле дна или какого-нибудь объекта. Это связано с уменьшением размера пикселей в большем конусе.

Скорость обновления экрана

Скорость прокрутки или обновления экрана также влияет на то, как отображаются дуги рыб на экране. Чем выше скорость обновления, тем больше пикселей активируется по мере прохождения рыбы в конусе и тем выше качество изображения дуги. (Однако не устанавливайте слишком высокую скорость обновления экрана, так как дуги рыб получатся растянутыми; поэкспериментируйте, пока не выберете скорость, наиболее вам подходящую.)

Монтаж преобразователя

Причиной недостаточно хорошего отображения дуг рыб на экране может быть неправильно выполненный монтаж преобразователя. Если он установлен на транце, его лицевая часть должна находиться в воде и быть направлена перпендикулярно вниз. Если преобразователь окажется не под прямым углом к воде, качественного отображения дугообразных сигналов рыб на экране вы не получите. Если дуга на экране загнута кверху, а не книзу, значит, передняя часть преобразователя слишком приподнята, и ее нужно опустить. Если на экране отображается лишь задняя половина дуги, значит, передняя часть преобразователя слишком опущена, и ее нужно приподнять.

И еще о дугах рыб

Самая мелкая рыбешка вообще может не отображаться в виде дуг. Из-за различных факторов состояния воды, таких, как сильные помехи от ее поверхности, термоклины и т.д., бывает, что и максимальной чувствительности эхолота недостаточно, чтобы на экране показались дуги рыб. Старайтесь установить максимальную чувствительность, но при этом следите, чтобы на экране не появлялось слишком много «мусора». Этот способ подходит для средних и больших глубин. Стая рыб появляется на экране в виде множества различных образований и форм, в зависимости от того, какая часть стаи попала в зону излучения преобразователя. В условиях мелководья несколько плывущих рядом рыб отображаются в виде брусков, сложенных как попало. Там, где поглубже, каждая из рыб отображается на экране в соразмерно своим габаритам.

Почему именно дуги?

Рыбы обозначаются на экране дугами из-за соотношения между рыбой и углом излучения (конусом) преобразователя при прохождении судна над рыбой. Как только рыба пересекает линию конуса, на экране активируется пиксель. При прохождении судна над рыбой расстояние до нее сокращается, при этом глубина нахождения рыбы (расстояние по вертикали между судном и рыбой), отображаемая на экране, становится меньше (дуга идет вверх). Когда центр конуса оказывается непосредственно над рыбой, заканчивается формирование первой половины дуги. В этот момент рыба находится к судну ближе всего, сигнал усиливается, и дуга становится толще. По мере увеличения расстояния между судном и рыбой дуга на экране идет вниз и обрывается после того, как рыба выплывает из конуса (т.е. зоны излучения) эхолота. Если рыба не проходит по прямо по центру конуса, дуга получается менее отчетливой. Поскольку рыба попадает в конус лишь на короткое время, эхосигналов меньше, а те, что все таки есть, слабее. Эта одна из причин, по которой в условиях мелководья эхолоту сложнее отображать на экране дуги рыб. Угол излучения оказывается слишком узок для того, чтобы сигнал успел приобрести форму дуги. Помните, что для образования дуг судно и рыба должны двигаться относительно друг друга. На практике это, как правило, означает, что судно идет на тихом ходу. Если судно стоит на якоре или просто не двигается, дуги образовываться не будут, и рыбы, вплывающие в конус и выплывающие из конуса излучения эхолота отображаются на экране в виде простых горизонтальных линий. Удачной рыбалки!

Ваш «Сусанин»

2 октября 2007 г.

ivan-susanin.ru

Как работает эхолот: принцип работы, как пользоваться для рыбалки, видео, эхолот Практик

Эхолот представляет собой современное оборудование, которое в значительной степени позволяет облегчить процесс рыбалки. С его помощью можно определить, в какой части водоема наблюдается скопление добычи, что избавляет от самостоятельного длительного исследования подводных глубин.

Как работает эхолот — принцип работы, как пользоваться?

Перед началом эксплуатации эхолота рекомендуется ознакомиться с основными принципами и механизмами, на которых строится его работа.

Конструкция всех современных моделей состоит из следующих основных частей:

  1. Дисплей, на который выводится текстовая и графическая информация.
  2. Передатчик, выполняющий функции излучателя.
  3. Приемника поступающих сигналов.
  4. Преобразователь, от которого зависят рабочие параметры, характеристики и возможности оборудования.

Все названные элементы устройства, а также их функции, задачи и прочие особенности, более детально рассматриваются ниже в соответствующих разделах.

Принцип работы эхолота

Сегодня в продаже имеется большое количество разнообразных моделей и их модификаций, различающихся рабочими характеристики и базовым набором функций.

Все подобные устройства функционируют по единому принципу, который заключается в совершении следующего алгоритма действий:

  1. После включения эхолота и перевода его в рабочий режим датчик начинает с заданной периодичностью создавать и распространять высокочастотные импульсы. Большинство современных устройств использует частоты 50 кГц или 200 кГц, реже встречаются модели со смежным значением.
  2. Импульсы, созданные датчиком, начинают распространяться по водоему, при этом они отражаются от всех встреченных препятствий: поверхности дна, рыбы, затонувших объектов.
  3. Эхо-сигналы возвращаются обратно и обрабатываются приемником, что приводит к созданию электрических импульсов.
  4. Импульсы, выработанные приемником, передаются преобразователю, где происходит их многократное усиление.
  5. Преобразованные электрические импульсы поступают на дисплей, где происходит их отображение в понятной для пользователя форме, это могут быть числовые значение или графические изображения.
  6. Дисплей эхолота выполняет функции не только по отображению информации, но и управлению всем устройством, для этого прибор оснащен клавиатурой.

Для отображения на дисплее пространства, находящегося непосредственно под плавательным средством, действуют следующие принципы:

  1. Быстрая или вертикальная развертка. Все эхо-импульсы, поступившие в приемник, поступают на экран в виде черных полос или точек, которые отстоят от линии поверхности на определенном интервале: он обязательно пропорционален глубине, где был обнаружен отражающий элемент. Это позволяет фактически моментально получать картину происходящего под плавательным судном в текущий момент времени.
  2. Горизонтальная развертка выполняет другие задачи, с ее помощью изображение на экране передвигается в левую сторону, а также происходит отображение координат «глубина-время». Благодаря этому пользователь получает возможность изучить картину происходящего под плавательным средством в уже прошедший период времени.

В соответствии с описанными принципами действия, во время неподвижности плавательного средства, поверхность дна имеет вид горизонтальных полос, а рыбы, от которых отразились импульсы, перемещаются на экране в левую сторону вместе с горизонтальной разверткой.

При начале движения можно наблюдать изменение отображения дна, если меняет текущая глубина. Большинство современных моделей позволяет вручную регулировать скорость развертки и синхронизировать ее со скоростью движения судна, что обеспечивает полную наглядность картины.

Преобразователь (тран-дюсер) эхолота

Преобразователь является важнейшим элементом, входящим в состав эхолота, поскольку именно от него зависят основные рабочие параметры и характеристики. Существуют различные разновидности, но для рыбалки используются в основном только пьезоэлектрические преобразователи, поскольку они занимают небольшое количество места.

Данный элемент выполняет следующие задачи:

  1. Трансформация электрической энергии импульсов с высокой частотностью в ультразвуковые волны.
  2. Обратное преобразование эхо-импульсов, отраженных от подводных объектов, в электрические сигналы.

Основным элементов преобразователя является кристалл, который может быть изготовлен из различных материалов, чаще всего для этих целей используется титанат бария. Он обладает цилиндрической формой и имеет металлизированное покрытие.

Данный элемент убирается в специальный корпус, изготовленный из металла, но обладающий хорошей звукопроводимостью.

Для рыболовных эхолотов применяются различные виды преобразователей, они классифицируются в зависимости от следующих особенностей:

  1. Состав данных, которые данное устройство предоставляет пользователю.
  2. Вид металла, из которого изготавливается корпус.
  3. Число используемых лучей.
  4. Место монтажа устройства на плавательном средстве.

Состав данных

Главной функцией, которую выполняют преобразователи, является получение и передача информации о глубине, на которой находятся различные подводные модели. В корпуса некоторых новых моделей монтируются основные датчики, меняющие получаемых состав данных.

С их помощью можно получить следующие сведения:

  1. Температура воды.
  2. Скорость течения.
  3. Скорость движения плавательного средства.

Материал

Для изготовления преобразователей обычно используются следующие разновидности материалов:

  1. Высокопрочный пластик. Такие модели подходят для монтажа на суднах с корпусом из металла или стеклопластика, их не рекомендуется устанавливать на деревянных поверхностях, поскольку древесина склонна к набуханию под воздействием влаги и способна раздавить преобразователь.
  2. Латунь. Этот металл отличается хорошей прочностью, поэтому установка таких преобразователей может осуществляться на суднах с деревянным корпусом.
  3. Бронза. Такие преобразователи являются универсальными, но рекомендуется воздержаться от их установки на суднах с металлическим корпусом, поскольку в месте соприкосновения может возникнуть электрохимическая реакция, которая приведет к деструкции обеих поверхностей.

Количество лучей

Важным критерием классификации преобразователей является количество используемых лучей, в соответствии с этой особенностью можно выделить 4 основные группы:

  1. Однолучевые преобразователи раньше включилась в устройство всех эхолотов, но сегодня они считаются устаревшим вариантом, который используется все реже.
  2. Двухлучевые преобразователи во время функционирования используют сразу две частоты – 50кГц и 200кГц. Это наиболее распространенный вариант, такие устройства могут работать на одной или сразу на двух частотах.
  3. Трехлучевые преобразователи являются инновационным вариантом, который встречается только в некоторых наиболее современных эхолотах, они необходимо для увеличения зоны просмотра.
  4. Шестилучевые преобразователи не особо распространены и популярны, связано это с высокой стоимостью и недавним появлением на рынке. Они позволяют создавать псевдотрехмерную картину обзора.
Я уже довольно давно занимаюсь активной рыбалкой и нашел много способов как улучшить клев. И вот самые эффективные:
  1. Активатор клева. Привлекает рыбу в холодной и теплой воде с помощью феромонов, входящих в состав и стимулирует ее аппетит. Жаль, что Росприроднадзор хочет ввести запрет на его продажу.
  2. Более чувствительные снасти. Обзоры и инструкции по другим типам снастей вы можете найти на страницах моего сайта.
  3. Приманки с использованием феромонов.
Остальные секреты успешной рыбалки вы можете получить бесплатно, читая другие мои материалы на сайте.

Место установки

Последним критерием деления преобразователей является место их монтажа, всего существует три способа:

  1. Установка устройства на дне плавательного средства.
  2. Установка устройства на транце.
  3. Установка устройства на внутренней стороне корпуса плавательного средства.

Рабочая частота эхолота

Рабочая частота эхолота является одной из важнейших технических характеристик, поскольку от нее зависят следующие возможности устройства:

  1. Глубина, на которой происходит обнаружение подводных объектов.
  2. Степень детализации обнаруженных объектов при неизменном показателе мощности.

Раньше эхолоты могли использовать только низкие или высокие частоты в зависимости от характеристик конкретной модели, во всех современных моделях имеется возможность одновременного или выборочного задействование частот обоих типов.

Работа на разных частотах имеет следующие особенности:

  1. При работе с высокими частотами изменяется ширина диаграмм, конус начинает сужаться. Это позволяет значительно повысить плотность звуковой энергии, что дает пользователю возможность обнаружения даже маленьких объектов, находящихся на большой глубине.
  2. При переходе на низкую частотность наблюдается пропорциональное расширение конуса, что уменьшает плотность звуковой энергии в нем. Происходит потеря возможности изучения больших глубин или поиска маленьких объектов, но при этом обнаружение рыбы происходит в более широкой зоне.

Влияние среды распространения звуковых волн

Ультразвуковые волны, созданные преобразователем, распространяются в водной среде, которая оказывает значительное влияние на качество работы прибора в целом.

В первую очередь она зависит от следующих характеристик среды:

  1. Затухание энергии ультразвуковых волн в водной среде.
  2. Наличие отражения ультразвуковых волн в одной среде, что позволяет создавать эхо-сигнал.

Затухание энергии

Затухание энергии звуковых волн обусловлено наличием в водной среде большого количества разнообразных органических и минеральных соединений, воздушных пузырьков и микроорганизмов. Все они частично поглощают распространяемые эхолотом сигналы.

Всего выделяется два типа затухания энергии:

  1. Затухание свободного пространства является естественным процессом, который зависит не от специфики среды, а от дальности сигнала.
  2. Затухание энергии по причине повторного прохождения одного и того же расстояния, что происходит при активно гидролокации.

Степень затухания энергии зависит также и от некоторых особенностей среды, основные закономерности заключаются в следующем:

  1. В пресной воде с низкой температурой затухание энергии происходит значительно медленнее, поскольку такая среда отличается повышенной плотностью и меньшей концентрацией различной органики.
  2. В морское воде затухание энергии происходит быстрее из-за высокой концентрации солей. Этот процесс ускоряется при прохождении через верхние водные слои, которые обычно лучше прогреваются и имеют более высокую температуру.

Наличие отражений

Отражения образуются, если звуковая волна встречает какой-либо объект, плотность которого отличается от окружающей среды, в качестве него может выступать:

  1. Рыба или другие подводные обитатели.
  2. Поверхность дна.
  3. Камни.
  4. Подводная растительность.
  5. Крупные пузыри воздуха.
  6. Отдельные слои воды с другой температурой, они называются термоклинами и встречаются в крупных водоемах.

Отражающие свойства дна

Поверхность дна многих крупных водоемов имеет неоднородную структуру, от ее специфики зависят отражающие свойства:

  1. Камни, другие твердые объекты и глиняная поверхность обладают хорошей отражающей способностью, что создает на экране прибора достаточно широкие линии.
  2. Подводная растительность, илистая или песчаная поверхность обладают слабой отражающей способностью, поэтому на экране они создают тонкие линии.

Песок, ил и прочие мягкие поверхность хорошо пропускают ультразвуковые волны через себя, поэтому они могут обеспечивать отображение более твердых масс, располагающихся под ними.

Влияние расположения преобразователя

Местонахождение преобразователя на судне может быть различным, все варианты имеют свои особенности, а также положительные и отрицательные стороны, которые рассматриваются ниже.

Преобразователь с установкой внутри корпуса

Прикрепление преобразователя сигналов к внутренним поверхностям корпуса плавательного средства возможно только, если они изготовлены из однослойного стеклопластика.

Важно соблюдать следующие условия монтажа:

  1. Для обеспечения надежности крепежа и фиксации положения используется эпоксидный клей, который не боится попадания влаги. От применения пластичного герметика необходимо отказаться по причине низких показателей акустической проводимости, что ухудшит функционирование устройства.
  2. Между устройством и водой должна располагаться только основная обшивка без дополнительных вставок, способных задерживать или частично поглощать сигналы.

Преобразователь с установкой на транец

Данный способ практикуется при монтаже на небольших плавательных средствах с низким показателем скорости передвижения.

Установка на транец имеет следующие особенности:

  1. Монтаж осуществляется на кронштейне, расположенном ниже уровня воды, он находится на транце.
  2. Конструкция должна обеспечивать возможность откидывания преобразователя назад при столкновении с какими-либо объектами, это защитная мера для минимизации риск повреждений.
  3. Главным преимуществом способа является легкость установки, демонтажа и обслуживания в процессе использования.
  4. Единственным существенным недостатком является близость гребных винтов, которые своими движениями способны уменьшить эффективность эхолота.

Преобразователь с установкой на корпусе («Truehull»)

Данный способ подразумевает монтаж устройства через специальное отверстие, вырезанное в поверхности дна плавательного средства.

Основные особенности заключаются в следующем:

  1. Предлагаемый вариант является самым эффективным, поскольку при работе преобразователя не будут создаваться какие-либо помехи, но он предполагает значительные финансовые траты.
  2. Установка таким способом рекомендуется на быстроходных и крупных плавательных средствах, чтобы максимально отдалить преобразователь от гребных винтов.
  3. Преобразователь, установленный на корпусе, должен регулярно очищаться для профилактики обрастания водорослями.
  4. Установка является довольно сложной, возможно потребуется помощь специалистов.

Влияние скорости движения на работу преобразователя

При изменении скорости движения судна в работе преобразователя иногда возникают сбои, приводящие к следующим последствиям:

  1. Возникновение шумовых помех на дисплее.
  2. Исчезновение отражений звуковых волн.
  3. Слабость полученных сигналов.

Основной причиной является непрерывный процесс парообразования, конденсации и лопания паровых пузырьков, что создает дополнительные шумы.

Повышенной чувствительность отличаются устройства, которые были установлены на транец, поскольку им приходится выдерживать тройную нагрузку:

  1. Они сами по себе являются источником кавитации.
  2. Получение шумовой нагрузки с поверхности корпуса плавательного средства.
  3. Поступление пузырьков, созданных при высоких оборотах гребного винта.

Чувствительность эхолота

Под чувствительностью эхолота обычно понимают характеристики, наделяющие его следующими возможностями:

  1. Дифференциация слабых эхо-сигналов от шумов приемник и прочих акустических помех.
  2. Возможность поиска небольших объектов на значительной глубине и их отображения на экране.

Высокая чувствительность позволяет получать больше информации о подводном пространстве, но при работе на незначительной глубине прибор начинает принимать сигналы, находящиеся вне основного луча.

Для удобства использование имеется возможность изменения показателей чувствительности в зависимости от условий среды:

  1. Ручная коррекция чувствительности требовалась при эксплуатации старых моделей эхолотов.
  2. Автоматическое определение оптимальных показателей чувствительности происходит в большинстве современных моделей.

Установка эхолота

Ознакомление с основными принципами функционирования эхолотов позволяет осуществить их правильный монтаж, от которого будет зависеть эффективность устройства. Модели, выпущенные разными производителями, могут иметь индивидуальные особенности установки, хотя различаются они незначительно.

Все нюансы, связанные с этим процессом, обычно указывается в прилагаемой к эхолоту документации.

Ниже будут рассмотрены все основные особенности, связанные с установкой эхолотов на плавательном средстве.

Установка излучателя

Наибольшее значение имеет правильная установка излучателя, поскольку именно от нее будет зависеть качество работы эхолота.

Необходимо учитывать следующие основные правила:

  1. Излучатель должен быть установлен в отдалении от любых неровностей на поверхности днища судна, поскольку они способны создавать завихрения и потоки пузырьков.
  2. Излучатель не допускается устанавливать позади заклепок или отверстий, предназначенных для забора воды.
  3. Излучатель должен быть установлен таким образом, чтобы он работал в спокойном потоке воды, не создающим дополнительные помехи.

Установка преобразователя на транец

Установка подобным способом осуществляется проще всего, осуществить ее сможет любой человек без предварительной подготовки. Монтаж осуществляется на специальный кронштейн с защитным подпружиненным элементом, который ставится на транец. Эта конструкция входит в базовую комплектацию при покупке эхолота.

Установка преобразователя «In Hull» в корпусе

Для этого способа можно приобрести специальную модель или самостоятельно поместить в защитный корпус транцевый преобразователь.

При установке необходимо учитывать следующие особенности:

  1. Большинство небольших плавательных средств с пластиковым корпусом имеют специальные места для монтажа преобразователя такого типа.
  2. Выбранное для монтажа место необходимо проверить на наличие усилителей, которые могут ухудшить функционирование устройства.
  3. Предварительная проверка заключается в наливании в трюм воды, после чего в нее погружается рабочая часть преобразователя. После этого следует проверить показатели глубины, выведенные на дисплей, с реальными значениями: если они полностью совпадают, то выбранное место подходит для установки.

Эксплуатация эхолота

Правила эксплуатации разных моделей эхолотов могут различаться, ниже будут рассмотрены основные правила и особенности, характерные для всех современных устройств.

Информация, отображаемая эхолотом, зависит от функций и возможностей конкретной модели.

Большинство современных приборов предоставляет пользователям следующие сведения:

  1. Глубина места, над которым проходит плавательное средство.
  2. Показатель напряжения источника питания.
  3. Температурный режим водоема, если установлен соответствующий датчик.
  4. Скорость движения плавательного средства при наличии датчика.
  5. Рыба отображается в виде особого значка, некоторые модели имеют возможность звукового оповещения.
  6. Термоклины и пространство под ними.
  7. Рельеф и структура поверхности дна.

Управление эхолотом

Управление эхолотом в зависимости от выбранной модели осуществляется при помощи клавиатуры или экранного меню.

Обычно присутствуют следующие кнопки:

  1. Набор кнопок со стрелками необходим для выбора функций.
  2. Кнопка Enter необходима для перехода в выбранный режим, подтверждения выбора функции или включения панели управления.
  3. Кнопка Setup позволяет войти или выйти из меню настроек.
  4. Кнопка Power позволяет включать и отключать эхолот, а также подключать подсветку.

Шкала глубин (Range)

Шкала глубин необходима для выполнения следующих функций:

  1. Ручная установка показателей глубины участка, о котором необходимо получить информацию.
  2. Автоматическое определение глубины участка, на котором находится судно.
  3. Просмотр информации об интересующем участке.

Масштаб (Zoom)

Данная функция позволяет увеличить и более детально изучить выбранный участок на экране прибора с учетом заданной глубины.

Обычно дисплей при этом делится на части с несколькими окошками:

  1. Первое окно предназначено для осуществления просмотра в стандартном режиме.
  2. Второе окно отображает выбранный пользователем участок с учетом установленного масштаба.

Усиление, чувствительность (Gain)

В статье уже упоминалось о влиянии показателей чувствительности на функционирование эхолота. В большинстве современных моделей этот показатель подбирается устройством в автоматическом режиме, но при этом сохраняется возможность ручной регулировки пользователем.

Для этого через меню настроек необходимо перейти в раздел Gain и откорректировать показатели чувствительности самостоятельно.

Изображение (Chart)

Изменение настроек, связанных с изображением, позволяет скорректировать прокрутку, что скажется на скорости обновления информации на дисплее прибора.

Для этого в меню Chart потребуется найти функцию Scroll Speed, для которой можно задать следующие значения:

  1. Fast – быстрая прокрутка.
  2. Medium – прокрутка со средней скоростью.
  3. Slow – медленная прокрутка.

Частота (Frequency)

Функция Frequency позволяет задать один из следующих режимов работы приспособления:

  1. Высокая частотность с показателем 200 кГц является режимом, который включен на большинстве моделей по умолчанию.
  2. Режим использования низких частот 50 кГц.
  3. Комбинированный режим, позволяющий одновременно задействовать волны с низкой и высокой частотностью.

Символы рыбы (FishSymbols)

В соответствующем меню можно отрегулировать особенности отображения рыб, которые могут осуществлять следующим способом:

  1. Значение Off выключает режим отображения рыб, в таком случае они будут представлены в виде полос, как и другие отраженные объекты.
  2. Значение On включает режим отображения рыб, в отличие от других отраженных объектов, они будут обозначены специальным значком.
  3. Возможность отображения рыб значками разного цвета при работе эхолота в двухчастотном режиме. Это позволяет понять, был они облучены узким или широким лучом.

Белая линия (Whiteline)

Данная функция позволяет разными способами отображать поверхность дна водоема:

  1. При выключенном режиме дно отображается в виде равномерно закрашенного черного участка без детализации структуры.
  2. При включенном режиме дно закрашивается различными оттенками, что отображает его структуру и строение.

В меню Tools обычно включается 4 набора инструментов, которыми можно воспользоваться:

  1. Depth Line позволяет воспользоваться «линией глубины», при помощи которого можно определить глубины до интересующего подводного объекта или осуществить его выбор.
  2. Flasher представляет собой луч, позволяющий создавать изображение на вертикальной полосе, что способствует повышенной детализации водных толщ и структуры дна.
  3. Noise Reject является инструментом для шумоподавления, с его помощью полученное изображение может быть очищено от нежелательных помех.
  4. Simulator представляет собой инструмент для обучения пользования эхолотом и проведения тестирования его основных функций.

Сигнализация об обнаружении рыбы (Alarm)

Возможностью подачи звукового сигнала об обнаружении рыбы, наделены многие современные модели эхолотов.

Эта функция обладает следующими особенностями:

  1. Сигнализация продолжает работать при отключении режима FishSymbols.
  2. Сигнализация может быть настроена для подачи сигнала при обнаружении рыб определенного размера.

Изображение на экране эхолота

Чтобы не испытать разочарование от применения эхолота на практике требуется хорошо понимать принципу его функционирования и не ждать получения информации, которую прибор не может предоставить. В соответствии с механизмами, на которых строится работа прибора, он способен измерять лишь одну координату – глубину водоема.

По этой причине эхолот не способен обеспечивать демонстрацию пространственной картины в рамках конуса излучения. Также он не сможет определить, где в рамках исследованного пространства находится рыба, водоросли или иные объекты, а лишь проинформирует об их нахождении на единой глубине.

Определение типа дна эхолотом

Все современные эхолоты могут идентифицировать тип поверхности дна в зависимости от того, покрыт он твердым грунтом, песком, илом или водорослями. Связано это с разной отражающей способностью подводных объектов, для улучшения детализации и более точного определения типа дна рекомендуется включить функцию «Белая линия».

Определение рыбы эхолотом

Правильной установленный на судне преобразователь будет передавать информацию об обнаруженной рыбе, на экране прибора она отображается в виде дуг, что связано с постоянным изменением расстояния до нее.

При этом необходимо учитывать следующие особенности:

  1. При увеличении ширины конуса дуги, отображающие рыбу, станут более выраженными.
  2. При приближении к оси конуса расстояние уменьшится, что сразу отобразится на дисплее прибора.
  3. При прохождении оси расстояние, наоборот, увеличится, поэтому дуги будут отображены на движущейся развертке.
  4. При вхождении в конус мощность на краях диаграммы понизится, из-за чего изображение станет тоньше.
  5. При прохождении по краю конуса рыба может вообще не отобразиться на дисплее.

У некоторых моделей имеется возможность подключения дополнительных датчиков, позволяющих находить рыбы не только под судном, но и обеим его сторонам.

Эхолот для рыболова

Основная функция эхолота заключается в поиске рыбы, но обнаружить ее без учета других факторов невозможно. Связано это с ее локализацией в отдельных участках водоема, а не равномерным распределением.

По этой причине эхолоты также используются и для изучения структуры дна, что позволяет выявить наиболее перспективные для рыбалки места, в которых рыба может прятаться, ночевать или охотиться.

Отображение рельефа дна

Эхолот не только измеряет, но и запоминает глубину до определенных точек каждый определенный промежуток времени. Анализ этой информации позволяет ему определять и отображать на экране рельеф поверхности дна и его основные изменения.

Отображение изменений рельефа происходит в виде линии, если же судно неподвижно, то она является прямой, поскольку глубина до точек не меняется.

В зависимости от глубины водоема рыболову следует обращать внимание на следующие перспективные участки:

  1. Подводные ямы, крупные впадины.
  2. Песчаные косы.
  3. Гребни и перекаты.
  4. Каменистые «банки».
  5. Ровные площадки, если в остальных местах поверхность слишком неоднородна.

Отображение рыбы

Как уже упоминалось, обнаруженная рыба отображается в виде дуг, их размер зависит от следующих факторов:

  1. Скорость движения рыбы относительно плавательного средства.
  2. Ширина конуса излучения.

Учитывая эти особенности, необходимо особенно аккуратно искать рыбы при движении на больших скоростях. Появление на экране незначительных дуг свидетельствует о том, что скорость необходимо уменьшить и пройти этот участок водоема еще раз.

Символ, обозначающий рыбы, обычно окрашивается в белый или черный цвет в зависимости от того, при помощи какого луча она была обнаружена.

Масштабирование

Масштабирование выполняется при помощи функции Zoom, что позволяет в 2-4 раза увеличить участки водоема с выбранной глубиной. Одновременное отображение в полномасштабном и увеличенном режиме позволяет комфортно изучать подводные заросли или места возле подводных препятствий.

Примеры диаграмм

Для обеспечения наглядности и полного понимания, какими возможностями обладают эхолот, рекомендуется ознакомиться с примерами диаграмм, созданными монохромными и жидкокристаллическими устройствами.

На них можно увидеть:

  1. Поверхностные помехи, отмеченные в верхней части экрана и опускающиеся вниз.
  2. Выделенный контур поверхности дна.
  3. Структура, выделяющая объекты, расположенные над дном и не являющиеся его частью.
  4. Дуги, обозначающие найденную рыбу.
  5. Другие большие или частичные дуги, не являющиеся рыбой.

Как не допустить ошибок, пользуясь эхолотом?

Все основные ошибки при эксплуатации эхолотов связаны с неправильным представлением о принципах их работы и отображения информация.

Для того чтобы не допускать различных промахов необходимо учитывать следующие нюансы:

  1. Прибор отображает не локальный участок водоема под судном, а гораздо более обширную его часть, поскольку излучения распространяются в разные стороны. Но на дисплее отображение происходит лишь в одной плоскости.
  2. Эхолоты не отображают пространственные образы рыбы относительно плавательного средства. Проекция осуществляется вертикальную плоскость, проходящую через центральную ось конуса.
  3. Между противоположными границами в поле лучей может оказаться посторонний объект, являющийся частью поверхности дна. На экране это будет отмечено в виде заштрихованной области, а рыбу, находящуюся в этой зоне, не удастся обнаружить. Однако она может быть замечена узким лучом, который не захватывает мешающийся объект.

Как работает эхолот «Практик»?

Эхолоты «Практик» являются популярным приспособлениями, поскольку они отличаются относительно низкой ценой при наличии большого количества функций.

С его помощью рыболов может выполнять следующие задачи:

  1. Подключить звуковое оповещение при обнаружении рыбы в зависимости от ее размеров.
  2. Вручную регулировать показатели глубины.
  3. Увеличивать пространство в трех разных режимах.
  4. Устанавливать зимний или летний режим функционирования.
  5. Регулировать частоту обновлений сведений на дисплее.
  6. Осуществлять калибровку датчика для улучшения функционирования на определенных участках водоема.
  7. Настраивать фильтр помех.
  8. Определять глухую зону.
  9. Получать информацию в разных формах в зависимости от выбранного режима, в том числе и предназначенного для профессионалов.

Когда последний раз ловили десятки ЗДОРОВЕННЫХ щук/карпов/лещей?

Нам всегда хочется получать результат от рыбалки – поймать не три окунька, а десяток килограммовых щук – вот это будет улов! Каждый из нас мечтает о таком, но далеко не каждый умеет.

Хорошего улова можно достичь (и мы это с вами знаем) благодаря хорошей прикормке.

Ее можно приготовить в домашних условиях, можно купить в рыбацких магазинах. Но в магазинах дорого, а чтобы приготовить прикормку дома, нужно потратить уйму времени, да и, по праве говоря, далеко не всегда домашняя прикормка хорошо работает.

Вам знакомо то разочарование, когда вы купили прикормку или приготовили ее дома, а поймали три-четыре окунька?

Так может быть пора воспользоваться действительно рабочим продуктом, эффективность которого доказана как научно, так и практикой на реках и прудах России?

Прикормка FishHungry дает тот самый результат, который мы не можем достичь сами, тем более, стоит она дешево, что отличает от других средств и времени тратить на изготовление не нужно – заказал, привезли и вперед!

Конечно, лучше один раз попробовать, чем тысячу раз услышать. Тем более сейчас – самый сезон! Скидка в 50% при заказе это отличный бонус!

Узнайте подробнее про приманку!

fastcarp.ru

Как пользоваться эхолотом

Эхолотом называют оборудование, с помощью которого можно определить местоположение рыбы в водоеме. Прибор избавляет рыбака от частого заброса приманок, длительного исследования глубин, и дает возможность увеличить улов.

Начинающие рыболовы часто не знают, как пользоваться эхолотом, но навык приходит с практикой. Главное — соблюдать технику безопасности.

Принцип работы эхолота

Рыбаки, которые привыкли полагаться на свои навыки, могут не понимать, для чего нужен эхолот. Он требуется, когда нужно быстро найти рыбу, а площадь водоема большая. Настраивать модели легко, расшифровка изображения не потребует специальных знаний.

Если заводские настройки установлены в правильном режиме, прибор способен показать четкую картинку. Лучше сразу поехать на пруд и посмотреть, как он работает. Нужно просто включить его на месте, а потом выключить после рыбалки.

Эхолот выполняет следующие функции:

  1. Определение расстояния до дна, его рельефа. С его помощью можно искать рыбу, ее стаи. Ловля с эхолотом позволяет увеличить добычу рыбы.
  2. В зависимости от компании-производителя устройство может иметь и другие опции.

Прибор состоит из 2 блоков. Первый представляет собой экран. Он имеет микрокомпьютер, обрабатывающий поступающие данные. Второй блок является датчиком, настроенным на восприятие информации.

Помимо таких главных характеристик, как частота работы устройства и количество лучей, которые определяют класс прибора, при выборе стоит обратить внимание на дисплей и его качество. Чем разрешение этого узла выше, тем точнее будут данные, которые увидит рыбак.

Схема работы такая:

  • Передатчик испускает электрический импульс. В преобразователе происходит его изменение в звуковую волну, которая передается в воду.
  • Когда она достигает расположенного в толще воды или на дне объекта, она отражается. После этого она возвращается в преобразователь, здесь происходит ее трансформация в электрический сигнал. Он усиливается приемником и отправляется на дисплей.
  • Звук в воде распространяется с постоянной скоростью, поэтому можно измерить временной интервал между отправкой сигнала и моментом получения эха. Так определяется расстояние до объекта.
  • Эхолот отправляет волну несколько раз в секунду, приходящий сигнал формирует картинку, которая постоянно меняется. Устройство покажет не только рыбу, но и коряги, скопление водорослей и другие предметы на дне или в водной толще.

Приборы работают с разной длиной волны. Чаще всего это 192 кГц, но компании выпускают устройства, рассчитанные и на 50 кГц. Хотя эти частоты относят к диапазону звуковых, они не слышны ни людям, ни обитателям глубин. Поэтому рыбаки могут быть уверены в том, что работающие модули не пугают рыбу.

Прибор используется как стационарно, прикрепленным к лодке, так и с временным креплением.

Правильная настройка прибора

Не все понимают принцип работы эхолота. В его основе лежит взаимодействие микрофона и таймера, к которым добавлен громкоговоритель. В большинстве приборов первая и вторая части объединены в 1 корпус, это повышает удобство использования.

Чтобы наиболее эффективно использовать эхолот, рыбак должен его правильно настроить. Для этого стоит выполнить следующие действия:

  1. Заводские настройки сохраняются в памяти, поэтому их можно менять, экспериментируя.
  2. Рыбак может заранее определить, на какой глубине он будет ловить рыбу, а потом вручную задать показатель.
  3. Повысить уровень чувствительности, довести его до 75%. Параметр настраивают в соответствии с обстоятельствами, в которых планируется ловля рыбы.
  4. Изменить настройки экрана, добившись максимальной резкости.
  5. Отрегулировать дополнительные параметры, такие как уменьшение шума, очистка изображения и др., с помощью которых можно повысить четкость картинки.

Стоит обратить внимание на батареи. Рыбакам приходится покупать блок питания отдельно, так как он часто не входит в комплект. В заводской комплектации он есть только на дорогих моделях.

Аккумулятор можно купить небольшой, не нужен мощный. Это устройство требует для работы мало энергии, оно функционирует в течение 4−7 ампер-часов 2 дня.

Как искать рыбу?

В инструкции для эхолота не пишут, как с его помощью ловить рыбу. Те рыболовы, которые думают о покупке устройства, должны заранее узнать о способах его использования.

Рыбалка «с рельефа» является одним из наиболее распространенных способов использования эхолота. В его основе лежит поиск необычного рельефа дна. Это свалы, донные ямы.

Прибор показывает и перепады глубин. Хищную рыбу привлекают такие места, ведь она сидит в них в засаде. Сюда же стекается кормовая рыба, которая интересует хищников.

Можно ловить рыбу с прибрежного свала, это наиболее простой способ поймать ее с помощью эхолота «с рельефа». Свалы есть на любом водохранилище, а прибрежный — достаточно протяженный участок. Чтобы определить направление падения, рекомендуется сделать замеры в нескольких местах.

Затем делают постановку, существует 3 способа. Это не только на свал или мель, но и глубину. На практике можно использовать любой вариант. Когда область будет исследована, следует двигаться по свалу дальше. Если нет поклевок в одном месте, это не значит, что результат указывает на некорректность действий рыбака.

Другие способы ловли с использованием эхолота похожи. Часто рыбу ловят «из-под бели». С помощью устройства можно найти косяки кормовых рыб, такие объекты привлекают хищных обитателей глубин.

Используя этот способ, рыбаки захватывают самые большие трофеи. Это крупные щуки, окуни и судаки. Тактику хорошо применять осенью, когда кормовая рыба перемещается по водоему большими стаями, уходя на более глубокие участки водохранилища.При поиске рыбы не стоит концентрировать внимание на редко разбросанных значках рыб или точках. Рыбака должна заинтересовать «сплошная стена», которая представляет собой концентрацию «бели».Использование систем с боковым обзором — это лов «со структуры». Появление устройств с боковым обзором стало прорывом, ведь они показывают, что находится под судном и в стороны от него на расстоянии от 20 до 40 м и более. С помощью такого инструмента можно увидеть большую рыбу, например, щуку.

Информация на экране

Поиск рыбы эхолотом отличается эффективностью, но работа с изображением на экране должна основываться на информации том, сколько лучей имеется у устройства. Если 1, то картинка будет плоской, и движение объектов будет показано линией. Подъем рыбы к приманке покажет дугу.

Устройство с 2 лучами формирует на экране более четкое изображение, а трехлучевой эхолот показывает на экране положение объектов в пространстве. Многолучевые модели показывают трехмерное изображение.

Четко видна рыба — объект на экране эхолота с карплоттером, который объединил навигатор с эхолокацией.

Эффективное использование прибора

Чаще всего прибор устанавливают на лодке, но допустима работа устройства, когда пользователь находится на берегу. Во всех случаях должна быть выполнена настройка эхолота в зависимости от условий лова. Он полезен при ловле на донку, но подходит и для случаев, когда рыбу невозможно обнаружить.

С лодки

При креплении на дно преобразователь помещают на пол судна, следя за тем, чтобы не было прослойки воздуха. Если скорость лодки большая, устройство устанавливают сзади.

С берега

Чаще всего эхолот крепят на лодку, но его можно использовать и на берегу. Прибор помещают в воду, забрасывая недалеко, а потом принимают сигнал на смартфон.

Выбирая устройство в магазине, необходимо сразу сообщать, что оно требуется для ловли рыбы с берега, тогда будет предоставлена нужная модель.

Особенности эксплуатации в зимний период

Приступая к зимней рыбалке, рыбак должен учитывать следующие особенности использования эхолота в течение этого периода:

  1. Необходимо защитить устройство и аккумулятор от холода. Без защитного кожуха его можно эксплуатировать при температуре до -10°C, а для работы в мороз потребуется закрыть его утеплителем или сделать коробку из пенопласта.
  2. Есть 2 метода использования эхолота зимой: датчик опускают в лунку или вмораживают в лед. Но оба варианта могут создать трудности при попытке сменить место ловли.
  3. Использование автоматического режима распознавания рыбы зимой неэффективно.
  4. Невозможно определить рельеф дна, поскольку устройство стоит в одном месте, и это не позволяет исследовать большую поверхность.

Зимой аккумулятор садится быстрее, поэтому стоит взять с собой запасной. Небольшие озера можно исследовать однолучевым аппаратом, а для больших глубин потребуется четырехлучевой эхолот.Читайте:  Выбор эхолота для зимней рыбалки

Техника безопасности при работе с эхолотом

Эхолоты работают в соответствии с промышленными стандартами, но на эффективность оказывает то, насколько правильно была выполнена установка.

Экран и кабели прибора располагают на расстоянии 1 м от любого другого оборудования, которое способно излучать радиоволны. От радара, установленного на судне, до эхолота должно быть не менее 2 м. Силовые кабели всех установок прокладывают на расстоянии друг от друга.

Эхолот работает без сбоев, если используется заводской кабель. При монтаже оборудования запрещено снимать разъемы, нельзя разрезать кабель, идущий от излучателя. Используя устройство, необходимо соблюдать общие требования безопасности, которые приняты в отношении приборов.

ribaku.info

Как работает эхолот

Главная страница ✦ Эхолоты ✦ Как работает эхолот

В самых простых словах: электрический импульс от передатчика преобразуется в звуковую волну в датчике(трансдьюсер) и передается в воду. Когда волна попадает на объект (рыбу, дно, дерево и т.д.) она отражается. Отраженная волна снова попадает в преобразователь, где она трансформируется в электрический сигнал, обрабатывается по заданному алгоритму, и посылается на дисплей. Так как скорость звука в воде постоянна (приблизительно 1440 метров в секунду), промежуток времени между отправкой сигнала и получением эха может быть измерен и по этим данным расстояние до объекта может быть определено. Этот процесс повторяется многократно в течение секунды. Наиболее часто используемая частота волны составляет 200 кГц, также иногда производятся приборы на частоте 83 кГц. Хотя эти частоты находятся в диапазоне ближе к звуковым частотам, они неслышны ни людям, ни рыбе. Как упомянуто ранее, эхолот посылает и принимает сигналы, затем «печатает» эхо на дисплей. Так как это случается много раз в секунду, непрерывная линия идущая поперек дисплея, показывает рисунок дна. Кроме того, на экране отображается сигнал, возвращенный от любого объекта в воде между поверхностью и дном. Зная скорость звука в воде и время, которое требуется для возвращения эха, прибор может показывать глубину и нахождение любой рыбы в воде.

⛵ Возможности эхолота

Хороший эхолот обладает четырьмя важными характеристиками:

1) Мощный передатчик.

2) Эффективный преобразователь (датчик).

3) Чувствительный приемник.

4) Дисплей высокого разрешения. 

Все части этой системы должны быть разработаны так, чтобы работать вместе, при любых погодных условиях и критических температурах. Высокая мощность передатчика увеличивает вероятность, что Вы получите эхо на глубоководье или в плохих водных условиях. Это также позволяет Вам видеть мелкие подробности, типа мальков и мелкой структуры дна. Преобразователь не должен только проводить мощный сигнал от передатчика, он также должен преобразовать электрический сигнал в звуковую энергию с наименьшей потерей в мощности сигнала. С другой стороны, он должен чувствовать самое малое эхо от малька или сигнал дна с глубоководья. Приемник имеет дело с чрезвычайно широким диапазоном сигналов. Он должен отличить максимально сильный передаваемый сигнал и слабое эхо, пришедшее от преобразователя. Кроме того, он должен различить объекты находящиеся близко друг к другу, превратив их в разные импульсы для дисплея. Дисплей должен иметь высокое разрешение (вертикальные пиксели) и хороший контраст, чтобы показывать подводный мир детально и четко. Это позволяет видеть мелкую рыбу и подробности дна.

🚤  Частота импульсов

Большинство современных эхолотов оперирует на частоте 200 кГц, некоторые используют 83 кГц. Есть свои преимущества у каждой частоты, но почти для всех состояний пресной воды и большинства состояний соленой воды, 200 кГц — лучший выбор. Эта частота дает лучшие подробности, работает лучше всего в неглубокой воде и на скорости, и обычно дает меньшее количество «шумовых» и нежелательных отражений. Определение близлежащих подводных объектов, также лучше на частоте 200 кГц. Это способность отобразить две рыбы как два отдельных эха вместо одной «капли» на экране.

Существуют некоторые условия, при которых частота 83 кГц лучше. Как правило, эхолоты, работающие на частоте 83 кГц (при тех же самых условиях и мощности) может проникать более глубоко через воду. Это происходит из-за естественной способности воды поглощать звуковые волны. Скорость поглощения больше для более высоких частот звука, чем для более низких частот. Поэтому 83 кГц эхолоты находят использование в более глубокой соленой воде. Также, преобразователи 83 кГц эхолотов имеют более широкие углы обзора, чем преобразователи 200 кГц эхолотов.

Пример: различие между 200 кГц и 83 кГц:

200 kHz83 kHz
Малые глубиныБольшие глубины
Узкий конический уголШирокий конический угол
Лучшее определение и разделение целейХудшее определение и разделение целей
Меньшая чувствительность к помехамБольшая чувствительность к помехам

🐠  Как формируется дуга рыбы

Причина, по которой рыба отображается, как дуга на экране эхолота заключается в относительном движении между рыбой и коническим углом преобразователя при проходе лодки над рыбой. Длина дуги на экране, от одного ее конца до другого — не имеет к размеру рыбы никакого отношения, а всего лишь обозначает время нахождения рыбы в конусе излучаемого акустического сигнала. Как только ведущая кромка конуса попадает на рыбу, пиксель отображается на экране эхолота. Поскольку лодка движется над рыбой, расстояние до нее уменьшается. Это ведет к тому, что каждый следующий пиксель отображается на экране выше предыдущего. Когда центр конуса находится непосредственно над рыбой, первая половина дуги сформирована. Это место — кратчайшее расстояние до рыбы. Так как рыба ближе к лодке, сигнал более сильный, и эта часть дуги самая толстая. Когда лодка уходит от рыбы, расстояние увеличивается и пиксели появляются более глубоко, пока рыба не уйдет из конуса. Если рыба не проходит непосредственно через центр конуса, дуга не будет отображена. Так как рыба находится в конусе не очень долго, не так много пикселей отображают ее на экране, а те что есть, более слабые. Это одна из причин, по которые трудно показать дуги рыбы у поверхности воды. Конический угол слишком узкий для получения дуги.

Это интересно: Рыбы создают одни из наиболее интересных и удивительных эхо-сигналов, какие только бывают. Вы наверняка слышали, что от плавательного пузыря в теле рыбы отражается эхо-сигнал, который в виде метки виден на экране эхолота. Это, правда, поскольку так и есть, но многие виды рыб не имеют плавательного пузыря, и, тем не менее, они также видны на экране эхолота! Как и мы, рыбы в основном состоят из воды, так что от эха было бы мало пользы. Но на теле рыбы есть чешуя, скелет и другие части тела, плотность которых больше плотности воды. Хотя от плавательного пузыря звуковой импульс отражается, наверное, лучше всего, но другие части тела рыбы также вполне способны стать причиной эхо-сигнала.

Помните, необходимо движение между лодкой и рыбой, чтобы была видна дуга. Для этого необходимо двигаться на медленной скорости. Если Вы остановились, то рыбы не будут отображаться арками. Вместо этого они будут видны как горизонтальные строки, поскольку они плавают внутри конуса преобразователя.

Исследование состояния воды и дна

Под этими словами подразумевается получение данных об особенностях состояния воды и плотности дна, а также получение данных о температуре воды. Для определения температуры используются специальные датчики, которые могут поставляться отдельно, а могут быть совмещены с преобразователем, то есть основным датчиком эхолота. К большинству эхолотов подключается датчик измерения скорости. Обычно он используется для измерения скорости лодки относительно воды, для определения оптимальной скорости для рыбалки, допустим, при ловле на «дорожку». Также для рыбаков полезными будут данные о скорости течения воды при стоянке на якоре. Анализируя полученные данные о скорости движения лодки, можно получить информацию о пройденном пути. При детальном анализе информации, полученной при помощи эхолота, можно определить, где находится термоклин — слой воды с низким содержанием кислорода, который образуется в стоячей воде при высоких температурах.

Каким образом определяется плотность и структура дна?

Это вторая, пожалуй, самая важная функция эхолота, позволяющая получать изображение контура дна — бровки, бугры и прочие изменения рельефа, представляющие интерес при поиске рыбы. Одной из ошибок рыболовов является представление, что на экране эхолота изображён тот участок, что охвачен лучом в момент времени, когда мы смотрим на экран. Но «картинка» на экране это всего лишь развёрнутая во времени история прохождения луча и её вполне можно сравнить с изображением луча на экране осциллографа — луч эхолота отражает на дисплее события во временном масштабе. Чем позже произошло событие, тем его изображение ближе к левому краю дисплея. Понятно, что событием в данном случае мы называем фрагмент изображения. Ряд событий и есть «картинка» на экране — прорисовка линии дна, объектов в воде, изображение изменения плотности воды (термоклин) и т.д. Сигнал луча эхолота по-разному отражается с разных видов донной поверхности. Например, сигнал, отраженный от илистого дна будет более рассеянный, нежели аналогичный сигнал, отраженный от жесткой поверхности. Поэтому илистое дно будет выглядеть на экране эхолота размытым и нечетким. А если дно жесткое, то на дисплее оно будет отображено насыщенным темным цветом без размытых краев.

⚓ Изображение объектов в воде, поиск рыбы.

Как бы парадоксально это ни звучало, но отображение символов рыбы на экране — это, скорее, второстепенная функция эхолота. Человек, увлекающийся рыбной ловлей, без проблем проанализирует данные эхолота, такие, как температура воды, глубина и структура дна, и на основе этих данных сделает вывод о возможном наличии рыбы на том или ином участке водоема. Когда на экране появляется графический символ рыбы или дуга, это значит, что луч эхолота несколько секунд назад прошел над местом, где он обнаружил объект, распознанный им, как рыба. При этом для того, чтобы эхолот просигнализировал о возможном наличии рыбы необходимо, чтобы она попала в центр луча. Мы уже говорили о том, что изображение экрана — это отображение происходящего под водой с учетом временной проекции. Аналогичная ситуация происходит во время обнаружения рыбы. Наиболее четкое изображение рыбы появляется на экране, когда рыба находится в центре луча. При этом не будем забывать, что и лодка, и рыба не стоят на месте, а движутся относительно друг друга. Если лодка идет на большой скорости на мелководье, а луч эхолота узкий, то шанс того, что эхолот зафиксирует появление рыбы в луче, крайне невелик. Да и к тому же, вряд ли рыба будет и дальше оставаться на месте, заметив лодку. На большой скорости также возможно появление на экране эхолота непрерывной черты, что говорит о том, что эхолот не успевает обрабатывать данные, полученные на такой скорости. Для того, чтобы информация о наличии рыбы, которая отображается на экране и реальность максимально совпадали, необходимо настроить чувствительность эхолота и скорость прокрутки экрана. Оптимальные значения для этих параметров устанавливаются исключительно опытным путем. Также желательно установить режим увеличения исследуемого участка (ZOOM). В этом случае информация на экране будет наиболее приближенной к действительности. Когда все параметры эхолота выставлены верно, мы увидим на дисплее дугу или символ рыбы. Значит ли это, что под лодкой действительно находится рыба? С вероятностью 80%- да. Однако бывает и так, что символом рыбы отображается проплывающая под водой коряга или иной предмет, очертаниями похожий на рыбу. Как в этом случае определить, действительно ли в поле луча эхолота попала рыба, а не посторонний предмет? Эхолот дает нам пищу для размышлений, а выводы мы делаем сами, основываясь на знаниях о повадках рыб и местах их обитания. Например, дуга возле донной коряги на глубине может оказаться судаком, а появление большого пятна на экране в углублении на фоне ровного дна, с большой вероятностью можно назвать стаей «бели» — некрупной густеры или плотвы. Конечно, однозначных выводов в любом случае делать не стоит, но места предположительного обнаружения рыбы в любом случае можно считать перспективными для ловли. То есть, рыбалка с эхолотом состоит из следующих важных факторов: анализ рельефа дна или наличие привлекательных для рыбы объектов на дне, и наличие символов рыбы на экране. И если одиночные экземпляры рыбы могут иногда отображаться некорректно, то обнаружение стаи крупных рыб практически всегда протекает без осложнений.

🐳  Виды эхолотов.

В основном все эхолоты делятся на однолучевые и многолучевые. Невозможно сказать однозначно, что лучше — один луч или несколько. Это все определяется индивидуальными запросами рыбака и особенностей ловли. Как уже было сказано выше, один неширокий луч дает четкое отображение структуры дна и подводных объектов, но при этом имеет не очень широкий угол обзора. Дополнительные же лучи эхолота не дает настолько четкого и детального изображения, но при этом позволяют наблюдать за объектами, которые находятся в верхнем и среднем слое воды. Например трехлучевой эхолот 200/455 кГц, формирует три луча, с общим углом покрытия 90 градусов: 20° центральный (200 кГц) и два боковых по 35° (455 кГц). Лучи эхолота выстроены в ряд — центральный луч отображает дно, боковые повышают обзорные свойства эхолота, что позволяет рыболову наиболее четко видеть, с какой стороны от лодки находится рыба. Данная система позволит получить наиболее подробную информацию о происходящем под водой, поскольку узкий луч (20°) проникает глубоко в воду, в то время как широкие лучи (35°) охватывают обширную площадь под лодкой.

Отдельная категория многолучевых эхолотов — это шестилучевые модели, которые позволяют генерировать трехмерную проекцию изображения. Однако такие эхолоты часто искажают полученную информацию, и потому требуют хороших технических навыков при настройке перед использованием. Самой популярной моделью является Humminbird Matrix 47 3D.

Технологии обработки и изображения эхо-сигнала.

Принцип работы эхолота заключается в том, что прибор обрабатывает и автоматически управляет такими параметрами, как скорость обновления, чувствительность, синхронизация работы передатчика и приемника. При этом условия эхолокации постоянно изменяются. Некоторые эхолоты позволяют вручную менять основные настройки. Это очень удобно для тех, кто предпочитает от начала до конца участвовать в процессе рыбаки и непосредственно эхолокации.

🚤  Как ведет себя эхолот на скорости.

Прежде всего надо отметить, что эхолот не предназначен для обнаружения рыбы на больших скоростях ! Поэтому на скорости большей, чем 60 км/час дуги рыб и изображения рельефа будут отображаться крайне некорректно. На такой скорости можно получать общую информацию о структуре дна. Что мешает корректной обработке сигнала на высокой скорости? В первую очередь это кавитация, то есть создание пузырьков воздуха вследствие турбулентности водяного потока при работе двигателя. В ряде случаев избежать пагубного воздействия кавитации помогает установка датчика не на транец, а на специальный держатель, который опускает датчик на большую глубину, чем, нежели он находился бы на транце.

Использование эхолота на зимней рыбалке.

Ряд эхолотов имеет возможность подключения дополнительного датчика, который может «просматривать» дно сквозь лед. Однако здесь есть свои подводные камни. Не всегда можно использовать датчик, который «бьет» через лед. Точнее, его можно использовать только в одном случае: если это первый лед и в нем нет пузырьков воздуха. Любое наличие воздуха в толще льда повлечет за собой искажение изображения. Как мы уже выяснили, для того, чтобы эхолот отображал сведения о глубине и структуре дна, необходимо, чтобы датчик находился в движении. Опуская датчик в лунку, мы ограничиваем его движение и, следовательно, теряем возможность видеть детали структуры дна. Обычные эхолоты для зимней рыбалки, не очень подходят, т.к. есть один недостаток — при изучении дна неподвижно, с помощью такого аппарата, дно как бы «плывет». Для зимней рыбалки, лучше использовать эхолот-флешер. Его главное достоинство — статичность дна. Флешеры способны в режиме реального времени практически мгновенно отображать все, что происходит под лункой. При этом есть возможность одновременного отображения рыбы и приманки. Встроенным флешером обладают модели Humminbird от 596 и выше.

Что может отобразить эхолот на зимней рыбалке?

Ремонт MarCum SHOWDOWN TROLLER

Во- первых, данные о составе дна. Во- вторых, данные о температуре воды. И, в третьих, мы можем получить данные о возможном местонахождении рыбы. Хоть датчик эхолота и находится в неподвижном положении, но рыба так или иначе находится в движении, поэтому на зимней рыбалке мы так же будем видеть отображение дуг и символов рыбы на экране эхолота. Для того, чтобы улучшить качество изображения на экране эхолота во время зимней рыбалки, необходимо установить низкую скорость обновления экрана, тогда объект, находящийся в воде в движении, будет виден гораздо четче. При этом в случае, если на экране появляется сплошная темная полоса, это может значить, что под водой довольная плотная стая рыб.

На что стоит обратить внимание при выборе зимнего эхолота:

  1. Время автономной работы (в холоде, емкость аккумулятора падает)
  2. Простота настроек
  3. Тип экрана
  4. Габариты
  5. Вес

Эхолоты Smartcast

Ремонт Эхолотов Smartcast

Ремонт Minn Kota DECKHAND DH 40

Современные эхолоты позволяют исследовать дно и подводные объекты с берега,Smartcast используя беспроводные датчики. Это удобно для тех, кто, помимо рыбалки с лодки, любит рыбачить с берега. Такие эхолоты очень компактные и могут устанавливаться на удочку, или в виде наручных часов. Например уникальная модель Smartcast RF35е — беспроводной рыбопоисковой эхолот, выполненный в виде наручных часов. Датчик можно использовать стационарно или в движении, при этом на дисплее будет отображаться изображение Smartcastтой зоны, над которой проплывает датчик. Эхолоты Smartcast RF35е идеально подходят для изучения дна на большом расстоянии и для ловли рыбы с берега. Прибор выдает сигнал обнаружения рыбы, а максимальная глубина обнаружения составляет 35 м. Датчик работает от замыкания двух контактов, что продлевает срок службы батареи.

Эти модели нельзя использовать как зимние эхолоты, так как они выходят из строя при температуре ниже нуля !

Практические выводы: Эхолот с большим углом обзора и низкой частотой излучения дает возможность быстро прочесать большие пространства. Это полезно при обследовании совершенно незнакомого места. Эхолот с высокой частотой излучения и малым углом обзора дает более точную информацию о происходящем под лодкой и в ближайших окрестностях. Так легче искать конкретную яму, бровку или банку. Чем ближе к поверхности эхолот показывает рыбу, тем ближе к курсу движения Вашей лодки эта рыба находится. Однолучевой эхолот на рыбалке — тоже хороший помощник, не обязательно гнаться за количеством лучей.

sonarmaster.ru

Что такое эхолот: принципы работы, выбор и использование

10 мая 2016

Эхолот представляет собой измерительный прибор, использующий звуковые импульсы для исследования структуры и рельефа дна, обнаружения подводных объектов и рыбы.

Эхолот позволяет постоянно мониторить толщу воды под судном, тем самым отслеживая перепады рельефа дна. Постоянный мониторинг (отправка и прием отраженных от объектов и дна импульсов) помогает профессионалам и любителям рыбной ловли обнаружить цели — рыбу — по изображению, выводимому на экран. При этом опытный пользователь эхолота может найти рыбу и по косвенным признакам, а не только по четкому изображению рыбы на экране эхолота.

Оснащенность встроенным GPS (Humminbird HELIX 5 SONAR) обеспечивает возможность использовать электронные карты для навигации и сохранять данные о местоположении найденных в толщи воды объектов с высокой степенью точности. Такое устройство представляет собой картплоттер-эхолот и объединяет в себе возможности обоих приборов. Для того чтобы купить подходящий эхолот необходимо более подробно узнать о его строении и назначении.

Как работает эхолот

Частота отправки импульсов

Эхолот посылает импульсы с определенной частотой. Как правило, производители устройств подобного типа используют следующие частоты: 192/200 кГц, 50 кГц, 83 кГц, 455 кГц и 800 кГц. Все обозначенные частоты отправки импульсов датчиком эхолота имеют как преимущества, так и недостатки. Поэтому при выборе устройства необходимо учитывать те специфические условия, в которых вы планируется использовать эхолот.

Первая, вторая и третья из перечисленных частот применяются наиболее часто. Их отличие состоит в следующем:

192 или 200 кГц50 кГц83 кГц
  • Небольшая глубина;
  • Малая ширина луча — до 60°;
  • Более хорошее определение и разделение целей;
  • Меньше шума на изображении.
  • Большая глубина;
  • Большая ширина луча — до 90°;
  • Определение и разделение целей хуже;
  • Больше шума на изображении.
  • Мелководье;
  • Еще большая ширина луча — до 120°;
  • Менее точная прорисовка дна.

Две относительно новые частоты — 455 кГц и 800 кГц. Первая работает на большей глубине, чем 800 кГц. Однако вторая отличается более высоким качеством прорисовки деталей структуры дна. 800 кГц лучше всего использовать при глубине 18 метров и меньше, хотя на большой скорости она подойдет и для исследования более глубоких вод: поскольку импульсов посылается больше, изображение получится более детальным, чем при использовании трансдьюсеров с другими частотами.В линейке эхолотов Lowrance можно найти приборы, подходящие для решения практически любых задач.

Принципы работы эхолота

Отправленный датчиком эхолота импульс отражается от различных объектов, которые встречает на своем пути, или дна. Это позволяет собрать информацию обо всем, что есть в толще воды: о количестве, размерах, плотности объектов, о структуре дна. Процессор дисплея обрабатывает полученную информацию, в результате чего на экран выводится движущееся графическое изображение. Поскольку сигналы посылаются и принимаются много раз в секунду, на экране рисуется непрерывная линия, обозначающая дно. Эхолоты Garmin, Raymarine, Hummingbird практически всегда оборудованы либо цветными, либо монохромными дисплеями различной величины

Составные части эхолота

Эхолот состоит из двух частей — трансдьюсера(датчика) и дисплея. Однако на рынке представлены множество моделей эхолокационных датчиков без монитора, поскольку многие современные модели многофункциональных дисплеев (МФД) поддерживают отображение данных, получаемых от трансдьюсера. .

Датчик-излучатель устанавливается на днище судна ниже ватерлинии и направляется на дно. Датчик посылает сигналы в сторону дна и принимает их после отражения от дна или других объектов, которые встретились на его пути. Данные от датчика обрабатываются и выводятся на специальный дисплей — входящий в комплект поставки или любой другой, совместимый с используемым трансдьюсером. 

Как выбрать и купить эхолот

Компания Lowrance, один из ведущих производителей эхолотов, указывает на четыре компонента хорошего эхолота:

  1. Мощный передатчик,
  2. Эффективный трансдьюсер,
  3. Чувствительный приемник,
  4. Контрастный дисплей с высоким разрешением.

Все части системы должны подходить для совместного использования и для эксплуатации в любых погодных условиях, в том числе при очень высоких и низких температурах.

При покупке эхолота в первую очередь необходимо учитывать, как и где вы планируете его использовать. Про глубину воды мы уже упоминали, когда писали про частоты эхолота. Отметим лишь, что на рынке сейчас представлены и однолучевые, и двухлучевые эхолоты, которые используют две частоты отправки импульса. Второй вариант (эхолот Garmin Echo 201dv) подойдет тем, кто планирует рыбачить на разных глубинах, либо просто тем, кто хочет использовать преимущества обеих частот и нивелировать их недостатки.

На что еще стоит обратить внимание

Во-первых, необходимо определиться, в какое время года планируется использовать устройство. Существуют модели, которые по своим характеристикам идеально подойдут для любителей зимней рыбалки (например, Lowrance Elite-4 HDI Ice Machine), и, наоборот, модели, которые не предназначены для использования зимой (Lowrance Elite-3x All-Season Pack).

Во-вторых, стоит обратить внимание на оснащенность эхолота дополнительными функциями и возможностями, не используемыми, как правило, в стандартных конфигурациях. К таким параметрам относятся например, возможность измерения температуры воды, определения плотности дна, передача данных по wi-fi (эхолот Raymarine Wi-Fish DV) и другие продвинуты функции.

Также, прежде чем купить эхолот, будет не лишним проверить сертификацию оборудования по стандартам РМРС и РРР.

Это не полный список параметров, которые следует учитывать при выборе эхолота. Если вы не можете решить какой эхолот купить или вас интересует цена эхолота  - обратитесь к нашим менеджерам: они помогут подобрать устройство именно под ваши нужды: тел. +7 (812) 34-000-56, e-mail [email protected]

seacomm.ru


Смотрите также